首页 » 技术分享 » 用户画像总结

用户画像总结

 

        最近在工作之余,结合自己的理解和论坛上的一些帖子,整理了份用户画像的文章,个人觉得这篇文章在宏观上很好地描述了用户画像的主要内容。(文章内的图片来源于不同帖子,权当分享,侵删)

一、 什么是用户画像

        用户画像是指根据用户的属性、用户偏好、生活习惯、用户行为等信息而抽象出来的标签化用户模型。通俗说就是给用户打标签,而标签是通过对用户信息分析而来的高度精炼的特征标识。通过打标签可以利用一些高度概括、容易理解的特征来描述用户,可以让人更容易理解用户,并且可以方便计算机处理。

用户画像是对现实世界中用户的建模,用户画像应该包含目标,方式,组织,标准,验证这5个方面。

目标:指的是描述人,认识人,了解人,理解人。

方式:又分为非形式化手段,如使用文字、语言、图像、视频等方式描述人;形式化手段,即使用数据的方式来刻画人物的画像。

组织:指的是结构化、非结构化的组织形式。

标准:指的是使用常识、共识、知识体系的渐进过程来刻画人物,认识了解用户。

验证:依据侧重说明了用户画像应该来源事实、经得起推理和检验。

        在产品早期和发展期,会较多地借助用户画像,帮助产品人员理解用户的需求,想象用户使用的场景,产品设计从为所有人做产品变成为三四个人做产品,间接的降低复杂度。

二、 用户画像的作用

在互联网、电商领域用户画像常用来作为精准营销、推荐系统的基础性工作,其作用总体包括:

(1)精准营销:根据历史用户特征,分析产品的潜在用户和用户的潜在需求,针对特定群体,利用短信、邮件等方式进行营销。

(2)用户统计:根据用户的属性、行为特征对用户进行分类后,统计不同特征下的用户数量、分布;分析不同用户画像群体的分布特征。

(3)数据挖掘:以用户画像为基础构建推荐系统、搜索引擎、广告投放系统,提升服务精准度。

(4)服务产品:对产品进行用户画像,对产品进行受众分析,更透彻地理解用户使用产品的心理动机和行为习惯,完善产品运营,提升服务质量。

(5)行业报告&用户研究:通过用户画像分析可以了解行业动态,比如人群消费习惯、消费偏好分析、不同地域品类消费差异分析

        根据用户画像的作用可以看出,用户画像的使用场景较多,用户画像可以用来挖掘用户兴趣、偏好、人口统计学特征,主要目的是提升营销精准度、推荐匹配度,终极目的是提升产品服务,起到提升企业利润。用户画像适合于各个产品周期:从新用户的引流到潜在用户的挖掘、从老用户的培养到流失用户的回流等。

        总结来说,用户画像必须从实际业务场景出发,解决实际的业务问题,之所以进行用户画像,要么是获取新用户,要么是提升用户体验、或者挽回流失用户等具有明确的业务目标。

        另外关于用户画像数据维度的问题,并不是说数据维度越丰富越好,总之,画像维度的设计同样需要紧跟业务实际情况进行开展。

 三、 用户画像的分类

        从画像方法来说,可以分为定性画像、定性+定量画像、定量画像

        从应用角度来看,可以分为行为画像、健康画像、企业信用画像、个人信用画像、静态产品画像、旋转设备画像、社会画像和经济画像等。

四、 用户画像需要用到哪些数据

        一般来说,根据具体的业务内容,会有不同的数据,不同的业务目标,也会使用不同的数据。在互联网领域,用户画像数据可以包括以下内容:

(1)人口属性:包括性别、年龄等人的基本信息

(2)兴趣特征:浏览内容、收藏内容、阅读咨询、购买物品偏好等

(3)消费特征:与消费相关的特征

(4)位置特征:用户所处城市、所处居住区域、用户移动轨迹等

(5)设备属性:使用的终端特征等

(6)行为数据:访问时间、浏览路径等用户在网站的行为日志数据

(7)社交数据:用户社交相关数据

        用户画像数据来源广泛,这些数据是全方位了解用户的基础,这里以Qunar的画像为例,其画像数据主要维度如下所示,包括用户RFM信息、航线信息等。

        Qunar的画像数据仓库构建都是基于Qunar基础数据仓库构建,然后按照维度进行划分。

五、 用户画像主要应用场景

a)用户属性

b)用户标签画像

c)用户偏好画像

d)用户流失

e)用户行为

f)产品设计

g) 个性化推荐、广告系统、活动营销、内容推荐、兴趣偏好

六、 用户画像使用的技术方法

七、 用户画像标签体系的建立

1、什么是标签体系

        用户画像是对现实用户做的一个数学模型,在整个数学模型中,核心是怎么描述业务知识体系,而这个业务知识体系就是本体论,本体论很复杂,我们找到一个特别朴素的实现,就是标签。

        标签是某一种用户特征的符号表示。是一种内容组织方式,是一种关联性很强的关键字,能方便的帮助我们找到合适的内容及内容分类。(注:简单说,就是你把用户分到多少个类别里面去,这些类是什么,彼此之间有什么关系,就构成了标签体系

        标签解决的是描述(或命名)问题,但在实际应用中,还需要解决数据之间的关联,所以通常将标签作为一个体系来设计,以解决数据之间的关联问题。

        一般来说,将能关联到具体用户数据的标签,称为叶子标签。对叶子标签进行分类汇总的标签,称为父标签。父标签和叶子标签共同构成标签体系,但两者是相对概念。例如:下表中,地市、型号在标签体系中相对于省份、品牌,是叶子标签。

一级标签

二级标签

三级标签

四级标签

 

移动属性

用户所在地

省份

地市

手机品牌

品牌

型号

 

 

业务属性

 

 

用户等级

普通

音乐普通会员

音乐高级会员

音乐VIP会员

转载自原文链接, 如需删除请联系管理员。

原文链接:用户画像总结,转载请注明来源!

0