首页 » 技术分享 » 双边滤波器的原理及实现

双边滤波器的原理及实现

 

双边滤波器是什么?

双边滤波(Bilateral filter)是一种可以保边去噪的滤波器。之所以可以达到此去噪效果,是因为滤波器是由两个函数构成。一个函数是由几何空间距离决定滤波器系数。另一个由像素差值决定滤波器系数。可以与其相比较的两个filter:高斯低通滤波器(http://en.wikipedia.org/wiki/Gaussian_filter)和α-截尾均值滤波器(去掉百分率为α的最小值和最大之后剩下像素的均值作为滤波器),后文中将结合公式做详细介绍。


双边滤波器中,输出像素的值依赖于邻域像素的值的加权组合,


权重系数w(i,j,k,l)取决于定义域核


和值域核

的乘积


同时考虑了空间域与值域的差别,而Gaussian Filter和α均值滤波分别只考虑了空间域和值域差别。


=======================================================================

双边滤波器的实现(MATLAB):function B = bfilter2(A,w,sigma)

CopyRight:

% Douglas R. Lanman, Brown University, September 2006.
% dlanman@brown.edu, http://mesh.brown.edu/dlanman


具体请见function B = bfltGray(A,w,sigma_d,sigma_r)函数说明。


%简单地说:
%A为给定图像,归一化到[0,1]的矩阵
%W为双边滤波器(核)的边长/2
%定义域方差σd记为SIGMA(1),值域方差σr记为SIGMA(2)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Pre-process input and select appropriate filter.
function B = bfilter2(A,w,sigma)

% Verify that the input image exists and is valid.
if ~exist('A','var') || isempty(A)
   error('Input image A is undefined or invalid.');
end
if ~isfloat(A) || ~sum([1,3] == size(A,3)) || ...
      min(A(:)) < 0 || max(A(:)) > 1
   error(['Input image A must be a double precision ',...
          'matrix of size NxMx1 or NxMx3 on the closed ',...
          'interval [0,1].']);      
end

% Verify bilateral filter window size.
if ~exist('w','var') || isempty(w) || ...
      numel(w) ~= 1 || w < 1
   w = 5;
end
w = ceil(w);

% Verify bilateral filter standard deviations.
if ~exist('sigma','var') || isempty(sigma) || ...
      numel(sigma) ~= 2 || sigma(1) <= 0 || sigma(2) <= 0
   sigma = [3 0.1];
end

% Apply either grayscale or color bilateral filtering.
if size(A,3) == 1
   B = bfltGray(A,w,sigma(1),sigma(2));
else
   B = bfltColor(A,w,sigma(1),sigma(2));
end


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Implements bilateral filtering for grayscale images.
function B = bfltGray(A,w,sigma_d,sigma_r)

% Pre-compute Gaussian distance weights.
[X,Y] = meshgrid(-w:w,-w:w);
%创建核距离矩阵,e.g.
%  [x,y]=meshgrid(-1:1,-1:1)
% 
% x =
% 
%     -1     0     1
%     -1     0     1
%     -1     0     1
% 
% 
% y =
% 
%     -1    -1    -1
%      0     0     0
%      1     1     1
%计算定义域核
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.
%计算值域核H 并与定义域核G 乘积得到双边权重函数F
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
   for j = 1:dim(2)
      
         % Extract local region.
         iMin = max(i-w,1);
         iMax = min(i+w,dim(1));
         jMin = max(j-w,1);
         jMax = min(j+w,dim(2));
         %定义当前核所作用的区域为(iMin:iMax,jMin:jMax)
         I = A(iMin:iMax,jMin:jMax);%提取该区域的源图像值赋给I
      
         % Compute Gaussian intensity weights.
         H = exp(-(I-A(i,j)).^2/(2*sigma_r^2));
      
         % Calculate bilateral filter response.
         F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
         B(i,j) = sum(F(:).*I(:))/sum(F(:));
               
   end
   waitbar(i/dim(1));
end

% Close waitbar.
close(h);


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Implements bilateral filter for color images.
function B = bfltColor(A,w,sigma_d,sigma_r)

% Convert input sRGB image to CIELab color space.
if exist('applycform','file')
   A = applycform(A,makecform('srgb2lab'));
else
   A = colorspace('Lab<-RGB',A);
end

% Pre-compute Gaussian domain weights.
[X,Y] = meshgrid(-w:w,-w:w);
G = exp(-(X.^2+Y.^2)/(2*sigma_d^2));

% Rescale range variance (using maximum luminance).
sigma_r = 100*sigma_r;

% Create waitbar.
h = waitbar(0,'Applying bilateral filter...');
set(h,'Name','Bilateral Filter Progress');

% Apply bilateral filter.
dim = size(A);
B = zeros(dim);
for i = 1:dim(1)
   for j = 1:dim(2)
      
         % Extract local region.
         iMin = max(i-w,1);
         iMax = min(i+w,dim(1));
         jMin = max(j-w,1);
         jMax = min(j+w,dim(2));
         I = A(iMin:iMax,jMin:jMax,:);
      
         % Compute Gaussian range weights.
         dL = I(:,:,1)-A(i,j,1);
         da = I(:,:,2)-A(i,j,2);
         db = I(:,:,3)-A(i,j,3);
         H = exp(-(dL.^2+da.^2+db.^2)/(2*sigma_r^2));
      
         % Calculate bilateral filter response.
         F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1);
         norm_F = sum(F(:));
         B(i,j,1) = sum(sum(F.*I(:,:,1)))/norm_F;
         B(i,j,2) = sum(sum(F.*I(:,:,2)))/norm_F;
         B(i,j,3) = sum(sum(F.*I(:,:,3)))/norm_F;
                
   end
   waitbar(i/dim(1));
end

% Convert filtered image back to sRGB color space.
if exist('applycform','file')
   B = applycform(B,makecform('lab2srgb'));
else  
   B = colorspace('RGB<-Lab',B);
end

% Close waitbar.
close(h);

调用方法:

I=imread('einstein.jpg');
I=double(I)/255;

w     = 5;       % bilateral filter half-width
sigma = [3 0.1]; % bilateral filter standard deviations

I1=bfilter2(I,w,sigma);

subplot(1,2,1);
imshow(I);
subplot(1,2,2);
imshow(I1)

实验结果:

参考资料:

1.《Computer Vision Algorithms and Applications》

2. http://de.wikipedia.org/wiki/Bilaterale_Filterung

3.http://www.cs.duke.edu/~tomasi/papers/tomasi/tomasiIccv98.pdf

4. http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html

5. http://mesh.brown.edu/dlanman


转载自原文链接, 如需删除请联系管理员。

原文链接:双边滤波器的原理及实现,转载请注明来源!

0