朴素贝叶斯(Naive Bayes)是一种简单的分类算法,它的经典应用案例为人所熟知:文本分类(如垃圾邮件过滤)。很多教材都从这些案例出发,本文就不重复这些内容了,而把重点放在理论推导(其实很浅显,别被“理论”吓到),三种常用模型及其编码实现(Python)。
如果你对理论推导过程不感兴趣,可以直接逃到三种常用模型及编码实现部分,但我建议你还是看看理论基础部分。
另外,本文的所有代码都可以从我的github获取:https://github.com/wepe/MachineLearning/tree/master/NaiveBayes
1. 朴素贝叶斯的理论基础
朴素贝叶斯算法是基于贝叶斯定理与特征条件独立假设的分类方法。
这里提到的贝叶斯定理、特征条件独立假设就是朴素贝叶斯的两个重要的理论基础。
1.1 贝叶斯定理
先看什么是条件概率。
P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为:
贝叶斯定理便是基于条件概率,通过P(A|B)来求P(B|A):
顺便提一下,上式中的分母P(A),可以根据全概率公式分解为:
1.2 特征条件独立假设
这一部分开始朴素贝叶斯的理论推导,从中你会深刻地理解什么是特征条件独立假设。
给定训练数据集(X,Y),其中每个样本x都包括n维特征,即x=(x1,x2,x3,...,xn),类标记集合含有k种类别,
即 y=(y1,y2,...,yk)。
如果现在来了一个新样本x,我们要怎么判断它的类别?从概率的角度来看,这个问题就是给定x,它属于哪个类别的概率
最大。那么问题就转化为求解 P(y1|x),P(y2|x),...,P(yk|x) 中最大的那个,
即求后验概率最大的输出:argmaxykP(yk|x)
那P(yk|x)怎么求解?答案就是贝叶斯定理:
根据全概率公式,可以进一步地分解上式中的分母:
先不管分母,分子中的 P(yk) 是先验概率,根据训练集就可以简单地计算出来。
而条件概率 ,它的参数规模是指数数量级别的,假设第i维特征xi可取值的个数
有Si个,类别取值个数为k个,那么参数个数为:
这显然不可行。针对这个问题,朴素贝叶斯算法对条件概率分布作出了独立性的假设,通俗地讲就是说假设各个维度的
特征x1,x2,...,xn互相独立,在这个假设的前提上,条件概率可以转化为:
这样,参数规模就降到
以上就是针对条件概率所作出的特征条件独立性假设,至此,先验概率 和条件概率 的求解问题就都解
决了,那么我们是不是可以求解我们所要的后验概率 了?
答案是肯定的。我们继续上面关于 的推导,将【公式2】代入【公式1】得到:
于是朴素贝叶斯分类器可表示为:
因为对所有的 ,上式中的分母的值都是一样的(为什么?注意到全加符号就容易理解了),所以可以忽略分母部分,
朴素贝叶斯分类器最终表示为:
关于 的求解,有以下三种常见的模型.
2. 三种常见的模型及编程实现
2.1 多项式模型
当特征是离散的时候,使用多项式模型。多项式模型在计算先验概率 和条件概率 时,会做一些平滑
处理,具体公式为:
当α=1时,称作Laplace平滑,当0<α<1时,称作Lidstone平滑,α=0 时不做平滑。
如果不做平滑,当某一维特征的值xi 没在训练样本中出现过时,会导致 ,从而导致后验概率为0。
加上平滑就可以克服这个问题。
2.1.1 举例
由此可以判定y=-1。
2.1.2 编程实现(基于Python,Numpy)
从上面的实例可以看到,当给定训练集时,我们无非就是先计算出所有的先验概率和条件概率,然后把它们存起来(当成一个查找表)。当来一个测试样本时,我们就计算它所有可能的后验概率,最大的那个对应的就是测试样本的类别,而后验概率的计算无非就是在查找表里查找需要的值。
我的代码就是根据这个思想来写的。定义一个MultinomialNB类,它有两个主要的方法:fit(X,y)和predict(X)。fit方法其实就是训练,调用fit方法时,做的工作就是构建查找表。predict方法就是预测,调用predict方法时,做的工作就是求解所有后验概率并找出最大的那个。此外,类的构造函数__init__()中,允许设定α
的值,以及设定先验概率的值。具体代码及如下:
"""
Created on 2015/09/06
@author: wepon (http://2hwp.com)
API Reference: http://scikit-learn.org/stable/modules/naive_bayes.html#naive-bayes
"""
import numpy as np
class MultinomialNB(object):
"""
Naive Bayes classifier for multinomial models
The multinomial Naive Bayes classifier is suitable for classification with
discrete features
Parameters
----------
alpha : float, optional (default=1.0)
Setting alpha = 0 for no smoothing
Setting 0 < alpha < 1 is called Lidstone smoothing
Setting alpha = 1 is called Laplace smoothing
fit_prior : boolean
Whether to learn class prior probabilities or not.
If false, a uniform prior will be used.
class_prior : array-like, size (n_classes,)
Prior probabilities of the classes. If specified the priors are not
adjusted according to the data.
Attributes
----------
fit(X,y):
X and y are array-like, represent features and labels.
call fit() method to train Naive Bayes classifier.
predict(X):
"""
def __init__(self,alpha=1.0,fit_prior=True,class_prior=None):
self.alpha = alpha
self.fit_prior = fit_prior
self.class_prior = class_prior
self.classes = None
self.conditional_prob = None
def _calculate_feature_prob(self,feature):
values = np.unique(feature)
total_num = float(len(feature))
value_prob = {}
for v in values:
value_prob[v] = (( np.sum(np.equal(feature,v)) + self.alpha ) /( total_num + len(values)*self.alpha))
return value_prob
def fit(self,X,y):
#TODO: check X,y
self.classes = np.unique(y)
#calculate class prior probabilities: P(y=ck)
if self.class_prior == None:
class_num = len(self.classes)
if not self.fit_prior:
self.class_prior = [1.0/class_num for _ in range(class_num)] #uniform prior
else:
self.class_prior = []
sample_num = float(len(y))
for c in self.classes:
c_num = np.sum(np.equal(y,c))
self.class_prior.append((c_num+self.alpha)/(sample_num+class_num*self.alpha))
#calculate Conditional Probability: P( xj | y=ck )
self.conditional_prob = {} # like { c0:{ x0:{ value0:0.2, value1:0.8 }, x1:{} }, c1:{...} }
for c in self.classes:
self.conditional_prob[c] = {}
for i in range(len(X[0])): #for each feature
feature = X[np.equal(y,c)][:,i]
self.conditional_prob[c][i] = self._calculate_feature_prob(feature)
return self
#given values_prob {value0:0.2,value1:0.1,value3:0.3,.. } and target_value
#return the probability of target_value
def _get_xj_prob(self,values_prob,target_value):
return values_prob[target_value]
#predict a single sample based on (class_prior,conditional_prob)
def _predict_single_sample(self,x):
label = -1
max_posterior_prob = 0
#for each category, calculate its posterior probability: class_prior * conditional_prob
for c_index in range(len(self.classes)):
current_class_prior = self.class_prior[c_index]
current_conditional_prob = 1.0
feature_prob = self.conditional_prob[self.classes[c_index]]
j = 0
for feature_i in feature_prob.keys():
current_conditional_prob *= self._get_xj_prob(feature_prob[feature_i],x[j])
j += 1
#compare posterior probability and update max_posterior_prob, label
if current_class_prior * current_conditional_prob > max_posterior_prob:
max_posterior_prob = current_class_prior * current_conditional_prob
label = self.classes[c_index]
return label
#predict samples (also single sample)
def predict(self,X):
#TODO1:check and raise NoFitError
#ToDO2:check X
if X.ndim == 1:
return self._predict_single_sample(X)
else:
#classify each sample
labels = []
for i in range(X.shape[0]):
label = self._predict_single_sample(X[i])
labels.append(label)
return labels
我们用上面举的例子来检验一下,注意S,M,L我这里用4,5,6替换:
import numpy as np
X = np.array([
[1,1,1,1,1,2,2,2,2,2,3,3,3,3,3],
[4,5,5,4,4,4,5,5,6,6,6,5,5,6,6]
])
X = X.T
y = np.array([-1,-1,1,1,-1,-1,-1,1,1,1,1,1,1,1,-1])
nb = MultinomialNB(alpha=1.0,fit_prior=True)
nb.fit(X,y)
print nb.predict(np.array([2,4]))#输出-1
2.2 高斯模型
当特征是连续变量的时候,运用多项式模型就会导致很多 (不做平滑的情况下),此时即使做平滑,
所得到的条件概率也难以描述真实情况。
所以处理连续的特征变量,应该采用高斯模型。
2.2.1 通过一个例子来说明:
下面是一组人类身体特征的统计资料。
这里的困难在于,由于身高、体重、脚掌都是连续变量,不能采用离散变量的方法计算概率。而且由于样本太少,所以也
无法分成区间计算。怎么办?
这时,可以假设男性和女性的身高、体重、脚掌都是正态分布,通过样本计算出均值和方差,也就是得到正态分布的密度
函数。有了密度函数,就可以把值代入,算出某一点的密度函数的值。
比如,男性的身高是均值5.855、方差0.035的正态分布。所以,男性的身高为6英尺的概率的相对值等于1.5789(大于1并
没有关系,因为这里是密度函数的值,只用来反映各个值的相对可能性)。
2.2.2 编程实现
高斯模型与多项式模型唯一不同的地方就在于计算 ,高斯模型假设各维特征服从正态分布,需要计算的是各维
特征的均值与方差。所以我们定义GaussianNB类,继承自MultinomialNB并且重载相应的方法即可。代码如下:
#GaussianNB differ from MultinomialNB in these two method:
# _calculate_feature_prob, _get_xj_prob
class GaussianNB(MultinomialNB):
"""
GaussianNB inherit from MultinomialNB,so it has self.alpha
and self.fit() use alpha to calculate class_prior
However,GaussianNB should calculate class_prior without alpha.
Anyway,it make no big different
"""
#calculate mean(mu) and standard deviation(sigma) of the given feature
def _calculate_feature_prob(self,feature):
mu = np.mean(feature)
sigma = np.std(feature)
return (mu,sigma)
#the probability density for the Gaussian distribution
def _prob_gaussian(self,mu,sigma,x):
return ( 1.0/(sigma * np.sqrt(2 * np.pi)) *
np.exp( - (x - mu)**2 / (2 * sigma**2)) )
#given mu and sigma , return Gaussian distribution probability for target_value
def _get_xj_prob(self,mu_sigma,target_value):
return self._prob_gaussian(mu_sigma[0],mu_sigma[1],target_value)
2.3 伯努利模型
与多项式模型一样,伯努利模型适用于离散特征的情况,所不同的是,伯努利模型中每个特征的取值只能是1和0(以文本
分类为例,某个单词在文档中出现过,则其特征值为1,否则为0).
2.3.1 编程实现
伯努利模型和多项式模型是一致的,BernoulliNB需要比MultinomialNB多定义一个二值化的方法,该方法会接受一个阈值
并将输入的特征二值化(1,0)。当然也可以直接采用MultinomialNB,但需要预先将输入的特征二值化。写到这里不想
写了,编程实现留给读者吧。
3 参考文献
- 《统计学习方法》,李航
- 《机器学习》,Tom M.Mitchell
- 维基百科Sex classification
- 朴素贝叶斯的三个常用模型:高斯、多项式、伯努利
- 朴素贝叶斯分类器的应用
- 数学之美番外篇:平凡而又神奇的贝叶斯方法
转载请注明出处,多谢:http://blog.csdn.net/u012162613/article/details/48323777
https://blog.csdn.net/u012162613/article/details/48323777
转载自原文链接, 如需删除请联系管理员。
原文链接:朴素贝叶斯理论推导与三种常见模型,转载请注明来源!