亚因子是用来控制变量每次迭代的变化的,主要影响迭代的收敛速度和收敛情况,松弛因子在0-1之间,越小代表两次迭代变化越小,这样计算比较稳定,但是计算速度慢。
一般fluent默认的松弛因子对于大多数问题都是适用的。如果你的问题比较复杂,开始阶段不容易收敛的话,可以相应把松弛因子改小一点。
亚松弛因子
由于流体力学中要求解非线性的方程,在求解过程中,控制变量的变化是很必要的,这就通过松弛因子来实现的。它控制变量在每次迭代中的变化。也就是说,变量的新值为原值加上变化量乘以松弛因子。
如:
A1=A0+B*DETA
A1 新值
A0 原值
B 松弛因子
DETA 变化量
松弛因子可控制收敛的速度和改善收敛的状况!B=1,相当于不用松弛因子。B>1,为超松弛因子,加快收敛速度。B<1,欠松弛因子,改善收敛的条件。一般来讲,大家都是在收敛不好的时候,采用一个较小的欠松弛因子。Fluent里面用的是欠松弛,主要防止两次迭代值相差太大引起发散。松弛因子的值在0~1之间,越小表示两次迭代值之间变化越小,也就越稳定,但收敛也就越慢。
转载自原文链接, 如需删除请联系管理员。
原文链接:关于fluent中亚松弛因子under-ralexation factors的思考,转载请注明来源!