首页 » 技术分享 » 使用Python进行有效数据可视化的1个技巧

使用Python进行有效数据可视化的1个技巧

 

Yes, you read correctly – this post will only give you 1 tip. I know most posts like this have 5 or more tips. I once saw a post with 15 tips, but I may have been daydreaming at the time. You’re probably wondering what makes this 1 tip so special. “Vik”, you may ask, “I’ve been reading posts that have 7 tips all day. Why should I spend the time and effort to read a whole post for only 1 tip?”

是的,您没有看错–这篇文章只会给您1条提示。 我知道大多数类似这样的帖子都有5条或更多提示。 我曾经看过一篇包含15条提示的帖子,但那时我可能一直在做白日梦。 您可能想知道是什么使这1个提示如此特别。 您可能会问“ Vik”,“我整天都在阅读包含7个提示的帖子。 我为什么要花时间和精力只阅读1条提示来阅读整篇文章?”

I can only answer that data visualization is about quality, not quantity. Like me, you probably spent hours learning about all the various charts that are out there – pie charts, line charts, bar charts, horizontal bar charts, and millions of others. Like me, you thought you understood data visualization. But we were wrong. Because data visualization isn’t about making different types of fancy charts. It’s about understanding your audience and helping them achieve their goals.

我只能回答数据可视化是关于质量,而不是数量。 像我一样,您可能花费了数小时来了解其中存在的所有各种图表-饼图,折线图,条形图,水平条形图以及数百万个其他图表。 和我一样,您认为您了解数据可视化。 但是我们错了。 因为数据可视化与制作不同类型的花式图表无关。 这是关于了解您的受众并帮助他们实现目标的过程。

Oh, this is embarrassing – I just gave away the tip. Well, if you keep reading, I promise that you’ll learn all about making effective data visualization, and why this one tip is useful. By the end, you’ll be able to make useful plots like this:

哦,这很尴尬–我只是给了小费。 好吧,如果您继续阅读,我保证您将学习有关进行有效的数据可视化的全部知识,以及为什么这一技巧有用。 到最后,您将能够做出如下有用的绘图:

转载自原文链接, 如需删除请联系管理员。

原文链接:使用Python进行有效数据可视化的1个技巧,转载请注明来源!

0