首页 » 技术分享 » 测试集的构成比例对网络分类性能的影响cp

测试集的构成比例对网络分类性能的影响cp

 

 

r1

r2

   

<1

<1

吸引子

c

>1

>1

排斥子

p

>1

<1

鞍点

a

<1

>1

反鞍点

fa

本文制作一个二分类网络用来分类c和p,训练集c:p=1:1

测试集c和p的比例为x:y.

让x:y的比例分别为0:10,1:9,2:8,3:7,4:6,5:5,6:4,7:3,8:2,9:1,10:0,观察分类准确率。

实验过程

制作一个4*4*2的网络向这个的左侧输入吸引子,并让左侧网络向1,0收敛;向右侧网络输入排斥子让右侧向0,1收敛,并让4*4*2部分权重共享,前面大量实验表明这种效果相当于将两个弹性系数为k1,k2的弹簧并联成一个弹性系数为k的弹簧,并且让k1=k2=k/2的过程。

 

这个网络的收敛标准是

if (Math.abs(f2[0]-y[0])< δ  &&  Math.abs(f2[1]-y[1])< δ   )

因为对应每个收敛标准δ都有一个特征的迭代次数n与之对应因此可以用迭代次数曲线n(δ)来评价网络性能。

本文尝试了δ从0.5到1e-6在内的26个值.

具体进样顺序

     

进样顺序

迭代次数

   

δ=0.5

     

c

1

 

判断是否达到收敛

p

2

 

判断是否达到收敛

梯度下降

     

c

3

 

判断是否达到收敛

p

4

 

判断是否达到收敛

梯度下降

     

……

     

达到收敛标准测量准确率,记录迭代次数,将这个过程重复199次

   

δ=0.4

     

     

δ=1e-6

     

将这个网络简写成

d2(c,p)-4-4-2-(2*k),k∈{0,1}

得到的数据

 

迭代次数n

                   

δ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5

147.1156

149.3769

149.4774

148.6834

147.7387

143.608

144.0101

147.1859

147.6382

146.9146

148.8543

0.4

6276.191

6215.095

6098.075

6083.377

6290.528

6294.472

6176.106

6170.256

6484.824

6527.412

6306.643

0.3

10407.46

10095

10101.43

9926.829

10142.37

10298.52

10020.49

10198.22

10131.84

10246.46

10420.39

0.2

15413.02

15648.27

15381.82

15081.81

15518.25

15136.69

15237

15533.43

15523

15367.05

15286.05

0.1

24893

24143.51

23415.88

25458.15

23850.98

24598.91

24297.87

24151.85

24210.84

23795.91

24414.25

0.01

59839.55

57398.58

57319.32

60125.44

59417.48

58611.96

59634.89

58560.76

59353.21

58745.15

59492.45

0.001

115431.3

111056.3

114920.8

114448.1

116262.8

110127.1

113627.5

107564.9

112414.9

112087.3

110956.2

1.00E-04

201610.7

209420.7

208738.6

201745.8

205856.7

210147.9

208380.2

209740.5

202288.7

201300.8

206577

9.00E-05

214043.2

216748.9

221076.9

218610

211840.9

217360.5

216305.4

216424.9

210094

216170.4

225841.7

8.00E-05

221814.5

214543.9

216763.3

217172.3

221671.8

216707.4

214417.1

221045.8

215015

222313.3

214257.2

7.00E-05

227647.3

225663

224240.8

225940.6

220378.4

231569.8

230410.2

228854.8

224129

221232.3

227719.7

6.00E-05

227186.4

236632.7

235333.2

241970.3

237669.7

240362.2

240610.8

236488.6

238662.6

232360.4

237107

5.00E-05

245535.8

246959.7

250549.8

245810.6

248245.3

247742.3

251281.2

258579.6

253117.2

260700.7

245581.8

4.00E-05

269459.6

267081.9

268540.2

271148.9

262207.7

265902.8

257265.3

261405.7

265370

264792.1

266492.5

3.00E-05

288701.1

288744.6

278070.8

282794.2

280333.4

275920.6

284119.7

282179.7

288700.1

282872.8

282278.7

2.00E-05

317002.9

307150

309043

319202.7

308706.8

315850.9

321754.6

307254.4

313644

327235

323231

1.00E-05

365424.3

364250.3

365575.7

363737.2

366601.9

376979.7

380203

370808.6

383179.2

356469.7

368836.5

9.00E-06

392786

372373.8

377167.3

379308.8

367669

381299.2

381642.5

393012.9

372760.6

396853.3

377565.8

8.00E-06

388277.8

399035.5

383537.9

392360

385873.2

391096.8

373728.2

415835.2

394640.4

394890.9

387094.8

7.00E-06

400704.8

396170.6

414295.7

401929.8

417806.1

385739.1

394560.6

406917.3

415909.8

401407

404034.1

6.00E-06

418156.4

409632.3

408388.9

416268.6

410188.3

427177.7

405782.9

431013.1

408631.4

421662

415028.5

5.00E-06

429071.5

420660.3

439646.4

444445

451018.4

438041.1

428783.3

438260.3

444052.7

428640.5

449725.6

4.00E-06

475880.1

462762.7

471101

464173.3

459961.9

498834.6

447440.4

458926.4

477415.8

465639.4

463744.1

3.00E-06

494180.2

470073.5

492323.9

491751.2

482770.3

497042.6

492925.9

488579

498906.6

483048.2

492239.1

2.00E-06

523083

540346.3

547355

522686.8

539823.1

553016.1

536623

540344.3

534051.6

528076.3

560042.5

1.00E-06

626599.7

642248.7

645703.1

624471.1

620645.9

606547.8

623932.2

620509.7

625129.6

656599.3

634245.9

 

迭代次数曲线是高度重合的,因为11组测试的进样样本比例构成是一致的都是

c:p=1:1。

平均准确率的数据

p

 

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

 

平均准确率p-ave

                   

c

δ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

0.5

1

0.899794

0.800464

0.700469

0.602029

0.4987

0.398861

0.300788

0.199763

0.100714

0

 

0.4

1

0.993124

0.985533

0.978667

0.971685

0.962249

0.959407

0.949055

0.94661

0.936273

0.931228

 

0.3

1

0.997123

0.995252

0.992324

0.989115

0.987324

0.983868

0.981942

0.980594

0.976283

0.974985

 

0.2

0.999713

0.998627

0.998053

0.996444

0.996157

0.995392

0.993994

0.99243

0.991534

0.991353

0.991293

 

0.1

0.991378

0.992334

0.994185

0.993013

0.994723

0.994879

0.996278

0.996056

0.9967

0.997656

0.998174

 

0.01

0.805469

0.843628

0.86149

0.860428

0.885031

0.910534

0.925835

0.952118

0.962002

0.981564

1

 

0.001

0.502568

0.56382

0.590958

0.662426

0.693804

0.756037

0.801309

0.862481

0.906087

0.952505

1

 

1.00E-04

0.362101

0.418197

0.468861

0.559645

0.622512

0.672788

0.742682

0.796052

0.871822

0.938179

1

 

9.00E-05

0.350089

0.408308

0.453423

0.533176

0.609474

0.667084

0.735776

0.801334

0.871459

0.933049

1

 

8.00E-05

0.332579

0.414143

0.482166

0.543906

0.601149

0.680223

0.739448

0.795997

0.873336

0.933466

1

 

7.00E-05

0.341975

0.409706

0.469022

0.5237

0.609937

0.664579

0.73143

0.796233

0.866324

0.934477

1

 

6.00E-05

0.349933

0.408665

0.464646

0.51877

0.602925

0.661707

0.732909

0.797421

0.86648

0.934653

1

 

5.00E-05

0.329244

0.404998

0.443464

0.522492

0.587029

0.668332

0.728895

0.789584

0.864352

0.930564

1

 

4.00E-05

0.322468

0.3719

0.436165

0.495812

0.592864

0.653654

0.728517

0.799468

0.861314

0.930936

1

 

3.00E-05

0.29949

0.362709

0.448821

0.513066

0.588508

0.661762

0.724141

0.787416

0.857496

0.930287

1

 

2.00E-05

0.290507

0.379259

0.427387

0.507653

0.574444

0.64132

0.713523

0.793784

0.859105

0.928552

1

 

1.00E-05

0.280139

0.335858

0.423363

0.495184

0.561788

0.634821

0.707185

0.785363

0.85316

0.929085

1

 

9.00E-06

0.24607

0.361719

0.424575

0.491004

0.571461

0.633312

0.707416

0.776882

0.855896

0.925171

1

 

8.00E-06

0.260743

0.334485

0.423625

0.483141

0.565254

0.633513

0.716933

0.770695

0.851756

0.925921

1

 

7.00E-06

0.25597

0.334219

0.396879

0.49047

0.558227

0.642869

0.70886

0.776983

0.851007

0.928184

1

 

6.00E-06

0.254732

0.342428

0.415078

0.475375

0.55957

0.631305

0.711853

0.777089

0.853175

0.927163

1

 

5.00E-06

0.266246

0.343142

0.40537

0.471854

0.543297

0.634383

0.704619

0.77977

0.851384

0.925946

1

 

4.00E-06

0.248595

0.335647

0.39871

0.483348

0.547648

0.615535

0.703905

0.781052

0.848346

0.924407

1

 

3.00E-06

0.251186

0.336422

0.397111

0.473856

0.5554

0.620419

0.701405

0.774382

0.847229

0.926535

1

 

2.00E-06

0.254184

0.317901

0.398499

0.473735

0.553287

0.617628

0.700017

0.772491

0.851651

0.925337

1

 

1.00E-06

0.238138

0.313062

0.38693

0.479238

0.542749

0.622884

0.696319

0.771445

0.84736

0.923129

1

 

从图中可以看到平均准确率的变化是高度规则的。

p

平均准确率p-ave

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

c

δ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

   

0.2556

0.335488

0.407014

0.48172

0.555868

0.628667

0.705851

0.776615

0.851096

0.926088

1

将1e-6<=δ<=1e-5的平均准确率取平均值。数据清晰的表明当c与p的进样比例是1:1的情况下,网络

d2(c,p)-4-4-2-(2*k),k∈{0,1}

可以识别测试集中的25.56%的p,和100%的c。如果用pc表示测试集中c占的比例

,用pp表示测试集中p占的比例。则总的平均准确率为

 

pp

平均准确率p-ave

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

pc

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

实测值

 

0.2556

0.335488

0.407014

0.48172

0.555868

0.628667

0.705851

0.776615

0.851096

0.926088

1

计算值

0.2556*pp+pc

0.2556

0.33004

0.40448

0.47892

0.55336

0.6278

0.70224

0.77668

0.85112

0.92556

1

 

从图上看很直观,这两条线高度重合。表明这种算法的精度是有保证的。

表明网络d2(c,p)-4-4-2-(2*k),k∈{0,1}的准确率是一种线性变量与测试集的比例高度相关。可以用表达式

精确的估算。

 

实验参数

学习率 0.1

权重初始化方式

Random rand1 =new Random();

int ti1=rand1.nextInt(98)+1;

tw[a][b]=xx*((double)ti1/100);

 

训练集

0.5

c

           

 

0.5

p

           

测试集

0

c

           
 

1

p

           

f2[0]

f2[1]

迭代次数n

平均准确率p-ave

δ

耗时ms/次

耗时ms/199次

耗时 min/199

最大准确率p-max

0.499498

0.530138

147.1156

1

0.5

2.040201

406

0.006767

1

0.602299

0.401437

6276.191

1

0.4

12.72864

2533

0.042217

1

0.710881

0.29236

10407.46

1

0.3

19.04523

3790

0.063167

1

0.810562

0.192418

15413.02

0.999713

0.2

26.62814

5299

0.088317

1

0.906917

0.094307

24893

0.991378

0.1

42.68342

8494

0.141567

1

0.991307

0.008775

59839.55

0.805469

0.01

100.5779

20015

0.333583

1

0.999158

8.48E-04

115431.3

0.502568

0.001

194.2714

38660

0.644333

0.966967

0.999916

8.40E-05

201610.7

0.362101

1.00E-04

338.3216

67326

1.1221

0.777778

0.999926

7.37E-05

214043.2

0.350089

9.00E-05

358.5427

71350

1.189167

0.833834

0.999935

6.49E-05

221814.5

0.332579

8.00E-05

370.799

73789

1.229817

0.698699

0.999943

5.72E-05

227647.3

0.341975

7.00E-05

381.6131

75941

1.265683

0.900901

0.999951

4.94E-05

227186.4

0.349933

6.00E-05

379.6181

75544

1.259067

0.734735

0.99996

4.05E-05

245535.8

0.329244

5.00E-05

420.2513

83631

1.39385

0.702703

0.999967

3.36E-05

269459.6

0.322468

4.00E-05

454.1005

90383

1.506383

0.828829

0.999976

2.37E-05

288701.1

0.29949

3.00E-05

491.3367

97777

1.629617

0.698699

0.999984

1.62E-05

317002.9

0.290507

2.00E-05

527.2915

104931

1.74885

0.696697

0.999992

8.14E-06

365424.3

0.280139

1.00E-05

605.2513

120445

2.007417

0.638639

0.999993

7.12E-06

392786

0.24607

9.00E-06

648.4322

129038

2.150633

0.677678

0.999994

6.43E-06

388277.8

0.260743

8.00E-06

642.8593

127929

2.13215

0.775776

0.999994

5.58E-06

400704.8

0.25597

7.00E-06

663.794

132095

2.201583

0.653654

0.999995

4.78E-06

418156.4

0.254732

6.00E-06

691.4472

137598

2.2933

0.682683

0.999996

3.99E-06

429071.5

0.266246

5.00E-06

709.5226

141210

2.3535

0.590591

0.999997

3.20E-06

475880.1

0.248595

4.00E-06

787.201

156669

2.61115

0.720721

0.999998

2.38E-06

494180.2

0.251186

3.00E-06

819.9196

163164

2.7194

0.638639

0.999998

1.58E-06

523083

0.254184

2.00E-06

865.2613

172187

2.869783

0.586587

0.999999

7.97E-07

626599.7

0.238138

1.00E-06

1039.332

206827

3.447117

0.581582

 

 

 

训练集

0.5

c

           

 

0.5

p

           

测试集

0.1

c

           
 

0.9

p

           

f2[0]

f2[1]

迭代次数n

平均准确率p-ave

δ

耗时ms/次

耗时ms/199次

耗时 min/199

最大准确率p-max

0.499428

0.53068

149.3769

0.899794

0.5

1.959799

406

0.006767

0.922923

0.596002

0.408051

6215.095

0.993124

0.4

12.91457

2570

0.042833

1

0.710895

0.293288

10095

0.997123

0.3

17.60804

3504

0.0584

1

0.810447

0.192132

15648.27

0.998627

0.2

26.44221

5262

0.0877

1

0.907157

0.093659

24143.51

0.992334

0.1

39.98492

7957

0.132617

1

0.991354

0.008732

57398.58

0.843628

0.01

94.23618

18753

0.31255

1

0.99918

8.24E-04

111056.3

0.56382

0.001

184.2513

36667

0.611117

0.957958

0.999918

8.27E-05

209420.7

0.418197

1.00E-04

343.8794

68449

1.140817

0.866867

0.999926

7.46E-05

216748.9

0.408308

9.00E-05

359.593

71559

1.19265

0.830831

0.999936

6.41E-05

214543.9

0.414143

8.00E-05

358.3467

71326

1.188767

0.784785

0.999943

5.69E-05

225663

0.409706

7.00E-05

375.5528

74751

1.24585

0.83984

0.999952

4.79E-05

236632.7

0.408665

6.00E-05

390.2764

77665

1.294417

0.778779

0.99996

4.04E-05

246959.7

0.404998

5.00E-05

410.397

81669

1.36115

0.875876

0.999968

3.20E-05

267081.9

0.3719

4.00E-05

445.3568

88626

1.4771

0.815816

0.999975

2.47E-05

288744.6

0.362709

3.00E-05

483.0905

96150

1.6025

0.813814

0.999984

1.63E-05

307150

0.379259

2.00E-05

514.9648

102478

1.707967

0.776777

0.999992

8.03E-06

364250.3

0.335858

1.00E-05

608.608

121114

2.018567

0.668669

0.999993

7.28E-06

372373.8

0.361719

9.00E-06

624.5075

124277

2.071283

0.6997

0.999994

6.15E-06

399035.5

0.334485

8.00E-06

665.2915

132394

2.206567

0.68969

0.999994

5.67E-06

396170.6

0.334219

7.00E-06

661.593

131657

2.194283

0.711712

0.999995

4.77E-06

409632.3

0.342428

6.00E-06

684.9598

136307

2.271783

0.751752

0.999996

4.05E-06

420660.3

0.343142

5.00E-06

707.5678

140806

2.346767

0.734735

0.999997

3.15E-06

462762.7

0.335647

4.00E-06

776.7387

154571

2.576183

0.80981

0.999998

2.36E-06

470073.5

0.336422

3.00E-06

784.6734

156166

2.602767

0.636637

0.999998

1.59E-06

540346.3

0.317901

2.00E-06

899.7085

179072

2.984533

0.652653

0.999999

7.79E-07

642248.7

0.313062

1.00E-06

426.0804

84790

1.413167

0.742743

 

 

训练集

0.5

c

           

 

0.5

p

           

测试集

0.2

c

           
 

0.8

p

           

f2[0]

f2[1]

迭代次数n

平均准确率p-ave

δ

耗时ms/次

耗时ms/199次

耗时 min/199

最大准确率p-max

0.49953

0.530377

149.4774

0.800464

0.5

2.120603

422

0.007033

0.841842

0.607443

0.398335

6098.075

0.985533

0.4

13.91457

2784

0.0464

0.997998

0.712454

0.292196

10101.43

0.995252

0.3

18.44221

3670

0.061167

1

0.809695

0.193394

15381.82

0.998053

0.2

26.38693

5267

0.087783

1

0.907243

0.094008

23415.88

0.994185

0.1

40.15075

7990

0.133167

1

0.99133

0.008756

57319.32

0.86149

0.01

95.19095

18943

0.315717

1

0.999157

8.49E-04

114920.8

0.590958

0.001

190.4171

37893

0.63155

0.963964

0.999919

8.16E-05

208738.6

0.468861

1.00E-04

346.8392

69021

1.15035

0.831832

0.999927

7.35E-05

221076.9

0.453423

9.00E-05

367.2412

73112

1.218533

0.81982

0.999936

6.43E-05

216763.3

0.482166

8.00E-05

362.4171

72121

1.202017

0.875876

0.999943

5.72E-05

224240.8

0.469022

7.00E-05

372.5879

74145

1.23575

0.825826

0.999951

4.89E-05

235333.2

0.464646

6.00E-05

391.4623

77916

1.2986

0.80981

0.99996

4.02E-05

250549.8

0.443464

5.00E-05

422.7387

84125

1.402083

0.761762

0.999968

3.22E-05

268540.2

0.436165

4.00E-05

450.4271

89636

1.493933

0.798799

0.999976

2.38E-05

278070.8

0.448821

3.00E-05

460.7688

91708

1.528467

0.767768

0.999984

1.63E-05

309043

0.427387

2.00E-05

513.7337

102249

1.70415

0.761762

0.999992

8.05E-06

365575.7

0.423363

1.00E-05

604.7487

120345

2.00575

0.681682

0.999993

7.09E-06

377167.3

0.424575

9.00E-06

622.6181

123901

2.065017

0.732733

0.999994

6.42E-06

383537.9

0.423625

8.00E-06

635.7839

126521

2.108683

0.796797

0.999994

5.67E-06

414295.7

0.396879

7.00E-06

686.9296

136699

2.278317

0.711712

0.999995

4.79E-06

408388.9

0.415078

6.00E-06

684.5226

136236

2.2706

0.700701

0.999996

4.06E-06

439646.4

0.40537

5.00E-06

733.1256

145892

2.431533

0.80981

0.999997

3.23E-06

471101

0.39871

4.00E-06

778.3116

154884

2.5814

0.768769

0.999998

2.45E-06

492323.9

0.397111

3.00E-06

815.7739

162339

2.70565

0.743744

0.999998

1.63E-06

547355

0.398499

2.00E-06

906.5729

180408

3.0068

0.640641

0.999999

8.19E-07

645703.1

0.38693

1.00E-06

1067.342

212417

3.540283

0.620621

 

 

训练集

0.5

c

           

 

0.5

p

           

测试集

0.3

c

           
 

0.7

p

           

f2[0]

f2[1]

迭代次数n

平均准确率p-ave

δ

耗时ms/次

耗时ms/199次

耗时 min/199

最大准确率p-max

0.499448

0.529456

148.6834

0.700469

0.5

2.201005

438

0.0073

0.736737

0.603439

0.401989

6083.377

0.978667

0.4

13.36683

2661

0.04435

0.995996

0.71033

0.293779

9926.829

0.992324

0.3

18.25628

3633

0.06055

1

0.809611

0.193233

15081.81

0.996444

0.2

26.66834

5307

0.08845

1

0.9075

0.09338

25458.15

0.993013

0.1

43.74372

8705

0.145083

1

0.991245

0.008823

60125.44

0.860428

0.01

101.3719

20189

0.336483

1

0.999153

8.51E-04

114448.1

0.662426

0.001

191.6533

38172

0.6362

0.971972

0.999916

8.41E-05

201745.8

0.559645

1.00E-04

341.3116

67921

1.132017

0.897898

0.999926

7.45E-05

218610

0.533176

9.00E-05

363.2161

72281

1.204683

0.901902

0.999933

6.72E-05

217172.3

0.543906

8.00E-05

361.7136

71982

1.1997

0.895896

0.999943

5.73E-05

225940.6

0.5237

7.00E-05

376.5176

74930

1.248833

0.815816

0.999951

4.87E-05

241970.3

0.51877

6.00E-05

397.3116

79066

1.317767

0.887888

0.99996

4.05E-05

245810.6

0.522492

5.00E-05

402.1156

80038

1.333967

0.902903

0.999968

3.23E-05

271148.9

0.495812

4.00E-05

444.1005

88376

1.472933

0.771772

0.999975

2.48E-05

282794.2

0.513066

3.00E-05

462.1106

91962

1.5327

0.82983

0.999984

1.59E-05

319202.7

0.507653

2.00E-05

520.8191

103644

1.7274

0.90991

0.999992

7.89E-06

363737.2

0.495184

1.00E-05

595.1859

118443

1.97405

0.761762

0.999993

7.25E-06

379308.8

0.491004

9.00E-06

621.1256

123604

2.060067

0.760761

0.999994

6.42E-06

392360

0.483141

8.00E-06

641.5477

127668

2.1278

0.673674

0.999994

5.60E-06

401929.8

0.49047

7.00E-06

657.3417

130826

2.180433

0.786787

0.999995

4.74E-06

416268.6

0.475375

6.00E-06

679.8894

135298

2.254967

0.842843

0.999996

4.03E-06

444445

0.471854

5.00E-06

728.1457

144903

2.41505

0.747748

0.999997

3.17E-06

464173.3

0.483348

4.00E-06

759.5075

151146

2.5191

0.756757

0.999998

2.37E-06

491751.2

0.473856

3.00E-06

804.3116

160059

2.66765

0.726727

0.999998

1.59E-06

522686.8

0.473735

2.00E-06

857.2161

170586

2.8431

0.717718

0.999999

8.19E-07

624471.1

0.479238

1.00E-06

1021.563

203291

3.388183

0.725726

 

 

训练集

0.5

c

           

 

0.5

p

           

测试集

0.4

c

           
 

0.6

p

           

f2[0]

f2[1]

迭代次数n

平均准确率p-ave

δ

耗时ms/次

耗时ms/199次

耗时 min/199

最大准确率p-max

0.499522

0.529873

147.7387

0.602029

0.5

2.035176

421

0.007017

0.642643

0.602132

0.40252

6290.528

0.971685

0.4

12.28643

2461

0.041017

0.993994

0.711184

0.293026

10142.37

0.989115

0.3

18.28141

3638

0.060633

1

0.810135

0.192014

15518.25

0.996157

0.2

26.8995

5353

0.089217

1

0.906733

0.094114

23850.98

0.994723

0.1

39.80402

7921

0.132017

1

0.991253

0.008819

59417.48

0.885031

0.01

98.28141

19558

0.325967

1

0.999184

8.21E-04

116262.8

0.693804

0.001

191.9648

38217

0.63695

0.967968

0.999918

8.20E-05

205856.7

0.622512

1.00E-04

338.7236

67406

1.123433

0.880881

0.999928

7.23E-05

211840.9

0.609474

9.00E-05

349.191

69489

1.15815

0.882883

0.999935

6.55E-05

221671.8

0.601149

8.00E-05

286.5327

57036

0.9506

0.925926

0.999942

5.84E-05

220378.4

0.609937

7.00E-05

361.201

71894

1.198233

0.901902

0.99995

4.99E-05

237669.7

0.602925

6.00E-05

391.6633

77957

1.299283

0.932933

0.999959

4.08E-05

248245.3

0.587029

5.00E-05

408.2915

81250

1.354167

0.857858

0.999967

3.28E-05

262207.7

0.592864

4.00E-05

433.9497

86356

1.439267

0.838839

0.999976

2.44E-05

280333.4

0.588508

3.00E-05

463.9799

92332

1.538867

0.877878

0.999984

1.61E-05

308706.8

0.574444

2.00E-05

515.9598

102692

1.711533

0.812813

0.999992

8.08E-06

366601.9

0.561788

1.00E-05

612.4724

121883

2.031383

0.872873

0.999993

7.34E-06

367669

0.571461

9.00E-06

608.0704

121038

2.0173

0.864865

0.999994

6.39E-06

385873.2

0.565254

8.00E-06

638.8894

127139

2.118983

0.843844

0.999994

5.68E-06

417806.1

0.558227

7.00E-06

690.3668

137383

2.289717

0.817818

0.999995

4.79E-06

410188.3

0.55957

6.00E-06

677.7839

134879

2.247983

0.788789

0.999996

4.03E-06

451018.4

0.543297

5.00E-06

761.2261

151487

2.524783

0.753754

0.999997

3.19E-06

459961.9

0.547648

4.00E-06

771.8342

153599

2.559983

0.775776

0.999998

2.38E-06

482770.3

0.5554

3.00E-06

897.1809

178546

2.975767

0.731732

0.999998

1.57E-06

539823.1

0.553287

2.00E-06

964.196

191880

3.198

0.803804

0.999999

7.95E-07

620645.9

0.542749

1.00E-06

1049.256

208809

3.48015

0.756757

 

 

训练集

0.5

c

           

 

0.5

p

           

测试集

0.5

c

           
 

0.5

p

           

f2[0]

f2[1]

迭代次数n

平均准确率p-ave

δ

耗时ms/次

耗时ms/199次

耗时 min/199

最大准确率p-max

0.499497

0.531202

143.608

0.4987

0.5

1.979899

394

0.006567

0.538539

0.599318

0.405333

6294.472

0.962249

0.4

13.19095

2641

0.044017

0.98999

0.711283

0.292612

10298.52

0.987324

0.3

18.76884

3735

0.06225

1

0.810641

0.192034

15136.69

0.995392

0.2

27.0804

5389

0.089817

1

0.906923

0.094133

24598.91

0.994879

0.1

42.76382

8522

0.142033

1

0.991266

0.008806

58611.96

0.910534

0.01

100.3216

19968

0.3328

1

0.999164

8.40E-04

110127.1

0.756037

0.001

187.5477

37332

0.6222

0.980981

0.999918

8.23E-05

210147.9

0.672788

1.00E-04

358.0905

71268

1.1878

0.93994

0.999926

7.38E-05

217360.5

0.667084

9.00E-05

370.4623

73722

1.2287

0.924925

0.999934

6.59E-05

216707.4

0.680223

8.00E-05

369.4623

73523

1.225383

0.925926

0.999942

5.80E-05

231569.8

0.664579

7.00E-05

314.9799

62689

1.044817

0.8999

0.999951

4.95E-05

240362.2

0.661707

6.00E-05

412.5226

82100

1.368333

0.944945

0.999959

4.07E-05

247742.3

0.668332

5.00E-05

424.9497

84572

1.409533

0.904905

0.999968

3.23E-05

265902.8

0.653654

4.00E-05

455.9698

90738

1.5123

0.908909

0.999976

2.45E-05

275920.6

0.661762

3.00E-05

472.6935

94066

1.567767

0.87988

0.999984

1.58E-05

315850.9

0.64132

2.00E-05

541.3568

107754

1.7959

0.86987

0.999992

8.06E-06

376979.7

0.634821

1.00E-05

646.196

128593

2.143217

0.82983

0.999993

7.18E-06

381299.2

0.633312

9.00E-06

652.8342

129923

2.165383

0.881882

0.999994

6.49E-06

391096.8

0.633513

8.00E-06

682.9548

135909

2.26515

0.834835

0.999994

5.68E-06

385739.1

0.642869

7.00E-06

653.7236

130091

2.168183

0.915916

0.999995

4.76E-06

427177.7

0.631305

6.00E-06

713.3166

141951

2.36585

0.821822

0.999996

4.00E-06

438041.1

0.634383

5.00E-06

727.5578

144801

2.41335

0.831832

0.999997

3.17E-06

498834.6

0.615535

4.00E-06

846.8342

168541

2.809017

0.808809

0.999998

2.37E-06

497042.6

0.620419

3.00E-06

849.6583

169083

2.81805

0.800801

0.999998

1.63E-06

553016.1

0.617628

2.00E-06

976.3819

194306

3.238433

0.875876

0.999999

7.82E-07

606547.8

0.622884

1.00E-06

1051.598

209269

3.487817

0.80981

 

 

训练集

0.5

c

           

 

0.5

p

           

测试集

0.6

c

           
 

0.4

p

           

f2[0]

f2[1]

迭代次数n

平均准确率p-ave

δ

耗时ms/次

耗时ms/199次

耗时 min/199

最大准确率p-max

0.499516

0.532101

144.0101

0.398861

0.5

2.628141

524

0.008733

0.443443

0.604804

0.400418

6176.106

0.959407

0.4

16.16583

3237

0.05395

0.994995

0.711513

0.292618

10020.49

0.983868

0.3

20.40704

4078

0.067967

1

0.810709

0.192582

15237

0.993994

0.2

30.39196

6052

0.100867

1

0.906985

0.094419

24297.87

0.996278

0.1

46.24121

9207

0.15345

1

0.991297

0.008775

59634.89

0.925835

0.01

96.71357

19255

0.320917

1

0.999153

8.54E-04

113627.5

0.801309

0.001

183.7035

36562

0.609367

0.983984

0.999918

8.22E-05

208380.2

0.742682

1.00E-04

336.995

67067

1.117783

0.947948

0.999928

7.23E-05

216305.4

0.735776

9.00E-05

349.6884

69591

1.15985

0.975976

0.999934

6.63E-05

214417.1

0.739448

8.00E-05

346.5226

68963

1.149383

0.952953

0.999943

5.68E-05

230410.2

0.73143

7.00E-05

372.1106

74053

1.234217

0.931932

0.999952

4.79E-05

240610.8

0.732909

6.00E-05

389.7136

77557

1.292617

0.946947

0.999959

4.10E-05

251281.2

0.728895

5.00E-05

406.4322

80882

1.348033

0.885886

0.999968

3.24E-05

257265.3

0.728517

4.00E-05

415.6131

82713

1.37855

0.852853

0.999976

2.38E-05

284119.7

0.724141

3.00E-05

459.196

91387

1.523117

0.923924

0.999984

1.63E-05

321754.6

0.713523

2.00E-05

519.5528

103395

1.72325

0.871872

0.999992

8.02E-06

380203

0.707185

1.00E-05

613.5427

122102

2.035033

0.928929

0.999993

7.32E-06

381642.5

0.707416

9.00E-06

616.2814

122643

2.04405

0.843844

0.999994

6.38E-06

373728.2

0.716933

8.00E-06

606.4724

120691

2.011517

0.906907

0.999994

5.62E-06

394560.6

0.70886

7.00E-06

9.135678

1828

0.030467

0.876877

0.999995

4.78E-06

405782.9

0.711853

6.00E-06

682.593

135842

2.264033

0.877878

0.999996

4.02E-06

428783.3

0.704619

5.00E-06

721.8342

143647

2.394117

0.891892

0.999997

3.17E-06

447440.4

0.703905

4.00E-06

754.5377

150157

2.502617

0.860861

0.999998

2.44E-06

492925.9

0.701405

3.00E-06

831.3065

165432

2.7572

0.865866

0.999998

1.61E-06

536623

0.700017

2.00E-06

907.191

180540

3.009

0.881882

0.999999

7.89E-07

623932.2

0.696319

1.00E-06

1054.201

209786

3.496433

0.834835

 

 

训练集

0.5

c

           

 

0.5

p

           

测试集

0.7

c

           
 

0.3

p

           

f2[0]

f2[1]

迭代次数n

平均准确率p-ave

δ

耗时ms/次

耗时ms/199次

耗时 min/199

最大准确率p-max

0.499421

0.530705

147.1859

0.300788

0.5

2.19598

437

0.007283

0.352352

0.607273

0.398441

6170.256

0.949055

0.4

16.31156

3249

0.05415

0.98999

0.711602

0.292775

10198.22

0.981942

0.3

18.39698

3668

0.061133

1

0.809789

0.192777

15533.43

0.99243

0.2

26.59296

5299

0.088317

1

0.906926

0.094385

24151.85

0.996056

0.1

40.11055

7990

0.133167

1

0.991251

0.008819

58560.76

0.952118

0.01

95.53769

19019

0.316983

0.998999

0.999154

8.51E-04

107564.9

0.862481

0.001

174.8693

34806

0.5801

0.987988

0.999918

8.23E-05

209740.5

0.796052

1.00E-04

341.7839

68017

1.133617

0.96997

0.999926

7.44E-05

216424.9

0.801334

9.00E-05

354.0402

70464

1.1744

0.940941

0.999934

6.58E-05

221045.8

0.795997

8.00E-05

361.3869

71926

1.198767

0.922923

0.999944

5.61E-05

228854.8

0.796233

7.00E-05

386.6884

76956

1.2826

0.925926

0.999951

4.92E-05

236488.6

0.797421

6.00E-05

420.2613

83635

1.393917

0.933934

0.999959

4.12E-05

258579.6

0.789584

5.00E-05

460.6985

91679

1.527983

0.940941

0.999967

3.28E-05

261405.7

0.799468

4.00E-05

468.794

93299

1.554983

0.960961

0.999976

2.43E-05

282179.7

0.787416

3.00E-05

503.0754

100122

1.6687

0.898899

0.999984

1.64E-05

307254.4

0.793784

2.00E-05

511.9598

101885

1.698083

0.925926

0.999992

8.01E-06

370808.6

0.785363

1.00E-05

607.5779

120920

2.015333

0.922923

0.999993

7.27E-06

393012.9

0.776882

9.00E-06

643.8442

128130

2.1355

0.922923

0.999994

6.36E-06

415835.2

0.770695

8.00E-06

681.8693

135697

2.261617

0.941942

0.999994

5.54E-06

406917.3

0.776983

7.00E-06

666.9045

132716

2.211933

0.924925

0.999995

4.86E-06

431013.1

0.777089

6.00E-06

706.4221

140599

2.343317

0.937938

0.999996

3.98E-06

438260.3

0.77977

5.00E-06

717.9296

142869

2.38115

0.862863

0.999997

3.21E-06

458926.4

0.781052

4.00E-06

752.5427

149760

2.496

0.903904

0.999998

2.36E-06

488579

0.774382

3.00E-06

798.2261

158850

2.6475

0.863864

0.999998

1.60E-06

540344.3

0.772491

2.00E-06

884.0804

175938

2.9323

0.910911

0.999999

7.86E-07

620509.7

0.771445

1.00E-06

1014.653

201922

3.365367

0.902903

 

 

训练集

0.5

c

           

 

0.5

p

           

测试集

0.8

c

           
 

0.2

p

           

f2[0]

f2[1]

迭代次数n

平均准确率p-ave

δ

耗时ms/次

耗时ms/199次

耗时 min/199

最大准确率p-max

0.499471

0.530313

147.6382

0.199763

0.5

2.376884

473

0.007883

0.238238

0.607675

0.396889

6484.824

0.94661

0.4

15.98492

3181

0.053017

0.983984

0.711471

0.291903

10131.84

0.980594

0.3

18.45729

3705

0.06175

1

0.81034

0.192206

15523

0.991534

0.2

26.90452

5355

0.08925

1

0.906968

0.094075

24210.84

0.9967

0.1

40.17085

8010

0.1335

1

0.991286

0.008796

59353.21

0.962002

0.01

97.15075

19333

0.322217

1

0.999151

8.54E-04

112414.9

0.906087

0.001

184.1055

36669

0.61115

0.995996

0.999918

8.26E-05

202288.7

0.871822

1.00E-04

334.5427

66574

1.109567

0.968969

0.999925

7.53E-05

210094

0.871459

9.00E-05

346.2462

68919

1.14865

0.984985

0.999934

6.64E-05

215015

0.873336

8.00E-05

355.1508

70675

1.177917

0.961962

0.999942

5.78E-05

224129

0.866324

7.00E-05

384.7337

76562

1.276033

0.967968

0.999951

4.87E-05

238662.6

0.86648

6.00E-05

405.9497

80804

1.346733

0.961962

0.99996

4.02E-05

253117.2

0.864352

5.00E-05

435.7085

86707

1.445117

0.96997

0.999968

3.19E-05

265370

0.861314

4.00E-05

450.799

89725

1.495417

0.976977

0.999976

2.45E-05

288700.1

0.857496

3.00E-05

492.3266

97974

1.6329

0.932933

0.999984

1.62E-05

313644

0.859105

2.00E-05

537.2915

106955

1.782583

0.950951

0.999992

7.99E-06

383179.2

0.85316

1.00E-05

654.6432

130275

2.17125

0.933934

0.999993

7.34E-06

372760.6

0.855896

9.00E-06

623.3518

124063

2.067717

0.935936

0.999994

6.44E-06

394640.4

0.851756

8.00E-06

656.5628

130656

2.1776

0.937938

0.999994

5.63E-06

415909.8

0.851007

7.00E-06

697.9497

138892

2.314867

0.930931

0.999995

4.67E-06

408631.4

0.853175

6.00E-06

683.7839

136089

2.26815

0.933934

0.999996

4.00E-06

444052.7

0.851384

5.00E-06

742.7236

147802

2.463367

0.916917

0.999997

3.24E-06

477415.8

0.848346

4.00E-06

809.5075

161092

2.684867

0.937938

0.999998

2.37E-06

498906.6

0.847229

3.00E-06

827.4975

164672

2.744533

0.936937

0.999998

1.55E-06

534051.6

0.851651

2.00E-06

904.5025

179997

2.99995

0.926927

0.999999

7.72E-07

625129.6

0.84736

1.00E-06

1062.995

211551

3.52585

0.913914

 

 

训练集

0.5

c

           

 

0.5

p

           

测试集

0.9

c

           
 

0.1

p

           

f2[0]

f2[1]

迭代次数n

平均准确率p-ave

δ

耗时ms/次

耗时ms/199次

耗时 min/199

最大准确率p-max

0.499505

0.530991

146.9146

0.100714

0.5

2.276382

453

0.00755

0.129129

0.604423

0.400491

6527.412

0.936273

0.4

13.9196

2770

0.046167

0.983984

0.711739

0.292659

10246.46

0.976283

0.3

18.13065

3624

0.0604

1

0.809975

0.192286

15367.05

0.991353

0.2

26.42714

5259

0.08765

1

0.906997

0.094119

23795.91

0.997656

0.1

39.42211

7845

0.13075

1

0.991311

0.008757

58745.15

0.981564

0.01

97.52764

19424

0.323733

1

0.999153

8.52E-04

112087.3

0.952505

0.001

184.1457

36645

0.61075

1

0.999918

8.26E-05

201300.8

0.938179

1.00E-04

337.9849

67261

1.121017

0.990991

0.999928

7.26E-05

216170.4

0.933049

9.00E-05

370.8894

73808

1.230133

0.986987

0.999935

6.48E-05

222313.3

0.933466

8.00E-05

381.5879

75937

1.265617

0.991992

0.999943

5.75E-05

221232.3

0.934477

7.00E-05

374.7588

74592

1.2432

0.976977

0.999951

4.95E-05

232360.4

0.934653

6.00E-05

394.2714

78476

1.307933

0.980981

0.999959

4.11E-05

260700.7

0.930564

5.00E-05

441.7538

87925

1.465417

0.983984

0.999968

3.20E-05

264792.1

0.930936

4.00E-05

366.3216

72929

1.215483

0.983984

0.999976

2.45E-05

282872.8

0.930287

3.00E-05

476.1809

94776

1.5796

0.970971

0.999984

1.61E-05

327235

0.928552

2.00E-05

553.196

110117

1.835283

0.967968

0.999992

8.01E-06

356469.7

0.929085

1.00E-05

601.4774

119726

1.995433

0.972973

0.999993

7.13E-06

396853.3

0.925171

9.00E-06

670.5075

133431

2.22385

0.966967

0.999994

6.21E-06

394890.9

0.925921

8.00E-06

664.7236

132280

2.204667

0.967968

0.999994

5.65E-06

401407

0.928184

7.00E-06

676.4724

134618

2.243633

0.97998

0.999995

4.87E-06

421662

0.927163

6.00E-06

710.4121

141372

2.3562

0.978979

0.999996

4.16E-06

428640.5

0.925946

5.00E-06

723.0402

143885

2.398083

0.971972

0.999997

3.21E-06

465639.4

0.924407

4.00E-06

784.3417

156084

2.6014

0.968969

0.999998

2.35E-06

483048.2

0.926535

3.00E-06

813.9196

161970

2.6995

0.95996

0.999998

1.54E-06

528076.3

0.925337

2.00E-06

901.191

179338

2.988967

0.961962

0.999999

8.11E-07

656599.3

0.923129

1.00E-06

1109.442

220779

3.67965

0.960961

 

 

训练集

0.5

c

           

 

0.5

p

           

测试集

1

c

           
 

0

p

           

f2[0]

f2[1]

迭代次数n

平均准确率p-ave

δ

耗时ms/次

耗时ms/199次

耗时 min/199

最大准确率p-max

0.499512

0.530374

148.8543

0

0.5

2.155779

429

0.00715

0

0.605797

0.399978

6306.643

0.931228

0.4

13.97487

2781

0.04635

0.984985

0.711183

0.29228

10420.39

0.974985

0.3

18.71357

3724

0.062067

1

0.810918

0.191953

15286.05

0.991293

0.2

26.24121

5238

0.0873

1

0.906977

0.093858

24414.25

0.998174

0.1

42.22111

8403

0.14005

1

0.991248

0.008814

59492.45

1

0.01

102.4221

20382

0.3397

1

0.999154

8.51E-04

110956.2

1

0.001

188.6834

37548

0.6258

1

0.999919

8.12E-05

206577

1

1.00E-04

345.6482

68784

1.1464

1

0.999926

7.45E-05

225841.7

1

9.00E-05

380.3417

75692

1.261533

1

0.999936

6.46E-05

214257.2

1

8.00E-05

365.0302

72643

1.210717

1

0.999943

5.75E-05

227719.7

1

7.00E-05

380.2864

75677

1.261283

1

0.999952

4.83E-05

237107

1

6.00E-05

398.6633

79334

1.322233

1

0.99996

4.04E-05

245581.8

1

5.00E-05

414.191

82424

1.373733

1

0.999967

3.30E-05

266492.5

1

4.00E-05

449.3116

89413

1.490217

1

0.999976

2.40E-05

282278.7

1

3.00E-05

474.9598

94517

1.575283

1

0.999984

1.63E-05

323231

1

2.00E-05

543.8794

108232

1.803867

1

0.999992

7.97E-06

368836.5

1

1.00E-05

621.2161

123638

2.060633

1

0.999993

7.13E-06

377565.8

1

9.00E-06

635.4623

126457

2.107617

1

0.999994

6.41E-06

387094.8

1

8.00E-06

653.1658

130044

2.1674

1

0.999994

5.60E-06

404034.1

1

7.00E-06

680.8241

135499

2.258317

1

0.999995

4.73E-06

415028.5

1

6.00E-06

700.2714

139385

2.323083

1

0.999996

3.96E-06

449725.6

1

5.00E-06

679.5126

135255

2.25425

1

0.999997

3.13E-06

463744.1

1

4.00E-06

781.4372

155522

2.592033

1

0.999998

2.39E-06

492239.1

1

3.00E-06

831.1809

165420

2.757

1

0.999998

1.60E-06

560042.5

1

2.00E-06

941.6432

187389

3.12315

1

0.999999

8.12E-07

634245.9

1

1.00E-06

1067.819

212512

3.541867

1

 

转载自原文链接, 如需删除请联系管理员。

原文链接:测试集的构成比例对网络分类性能的影响cp,转载请注明来源!

0