r1 |
r2 |
||
<1 |
<1 |
吸引子 |
c |
>1 |
>1 |
排斥子 |
p |
>1 |
<1 |
鞍点 |
a |
<1 |
>1 |
反鞍点 |
fa |
本文制作一个二分类网络用来分类c和p,训练集c:p=1:1
测试集c和p的比例为x:y.
让x:y的比例分别为0:10,1:9,2:8,3:7,4:6,5:5,6:4,7:3,8:2,9:1,10:0,观察分类准确率。
实验过程
制作一个4*4*2的网络向这个的左侧输入吸引子,并让左侧网络向1,0收敛;向右侧网络输入排斥子让右侧向0,1收敛,并让4*4*2部分权重共享,前面大量实验表明这种效果相当于将两个弹性系数为k1,k2的弹簧并联成一个弹性系数为k的弹簧,并且让k1=k2=k/2的过程。
这个网络的收敛标准是
if (Math.abs(f2[0]-y[0])< δ && Math.abs(f2[1]-y[1])< δ )
因为对应每个收敛标准δ都有一个特征的迭代次数n与之对应因此可以用迭代次数曲线n(δ)来评价网络性能。
本文尝试了δ从0.5到1e-6在内的26个值.
具体进样顺序 |
|||
进样顺序 |
迭代次数 |
||
δ=0.5 |
|||
c |
1 |
判断是否达到收敛 |
|
p |
2 |
判断是否达到收敛 |
|
梯度下降 |
|||
c |
3 |
判断是否达到收敛 |
|
p |
4 |
判断是否达到收敛 |
|
梯度下降 |
|||
…… |
|||
达到收敛标准测量准确率,记录迭代次数,将这个过程重复199次 |
|||
δ=0.4 |
|||
… |
|||
δ=1e-6 |
将这个网络简写成
d2(c,p)-4-4-2-(2*k),k∈{0,1}
得到的数据
迭代次数n |
|||||||||||
δ |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
1 |
0.5 |
147.1156 |
149.3769 |
149.4774 |
148.6834 |
147.7387 |
143.608 |
144.0101 |
147.1859 |
147.6382 |
146.9146 |
148.8543 |
0.4 |
6276.191 |
6215.095 |
6098.075 |
6083.377 |
6290.528 |
6294.472 |
6176.106 |
6170.256 |
6484.824 |
6527.412 |
6306.643 |
0.3 |
10407.46 |
10095 |
10101.43 |
9926.829 |
10142.37 |
10298.52 |
10020.49 |
10198.22 |
10131.84 |
10246.46 |
10420.39 |
0.2 |
15413.02 |
15648.27 |
15381.82 |
15081.81 |
15518.25 |
15136.69 |
15237 |
15533.43 |
15523 |
15367.05 |
15286.05 |
0.1 |
24893 |
24143.51 |
23415.88 |
25458.15 |
23850.98 |
24598.91 |
24297.87 |
24151.85 |
24210.84 |
23795.91 |
24414.25 |
0.01 |
59839.55 |
57398.58 |
57319.32 |
60125.44 |
59417.48 |
58611.96 |
59634.89 |
58560.76 |
59353.21 |
58745.15 |
59492.45 |
0.001 |
115431.3 |
111056.3 |
114920.8 |
114448.1 |
116262.8 |
110127.1 |
113627.5 |
107564.9 |
112414.9 |
112087.3 |
110956.2 |
1.00E-04 |
201610.7 |
209420.7 |
208738.6 |
201745.8 |
205856.7 |
210147.9 |
208380.2 |
209740.5 |
202288.7 |
201300.8 |
206577 |
9.00E-05 |
214043.2 |
216748.9 |
221076.9 |
218610 |
211840.9 |
217360.5 |
216305.4 |
216424.9 |
210094 |
216170.4 |
225841.7 |
8.00E-05 |
221814.5 |
214543.9 |
216763.3 |
217172.3 |
221671.8 |
216707.4 |
214417.1 |
221045.8 |
215015 |
222313.3 |
214257.2 |
7.00E-05 |
227647.3 |
225663 |
224240.8 |
225940.6 |
220378.4 |
231569.8 |
230410.2 |
228854.8 |
224129 |
221232.3 |
227719.7 |
6.00E-05 |
227186.4 |
236632.7 |
235333.2 |
241970.3 |
237669.7 |
240362.2 |
240610.8 |
236488.6 |
238662.6 |
232360.4 |
237107 |
5.00E-05 |
245535.8 |
246959.7 |
250549.8 |
245810.6 |
248245.3 |
247742.3 |
251281.2 |
258579.6 |
253117.2 |
260700.7 |
245581.8 |
4.00E-05 |
269459.6 |
267081.9 |
268540.2 |
271148.9 |
262207.7 |
265902.8 |
257265.3 |
261405.7 |
265370 |
264792.1 |
266492.5 |
3.00E-05 |
288701.1 |
288744.6 |
278070.8 |
282794.2 |
280333.4 |
275920.6 |
284119.7 |
282179.7 |
288700.1 |
282872.8 |
282278.7 |
2.00E-05 |
317002.9 |
307150 |
309043 |
319202.7 |
308706.8 |
315850.9 |
321754.6 |
307254.4 |
313644 |
327235 |
323231 |
1.00E-05 |
365424.3 |
364250.3 |
365575.7 |
363737.2 |
366601.9 |
376979.7 |
380203 |
370808.6 |
383179.2 |
356469.7 |
368836.5 |
9.00E-06 |
392786 |
372373.8 |
377167.3 |
379308.8 |
367669 |
381299.2 |
381642.5 |
393012.9 |
372760.6 |
396853.3 |
377565.8 |
8.00E-06 |
388277.8 |
399035.5 |
383537.9 |
392360 |
385873.2 |
391096.8 |
373728.2 |
415835.2 |
394640.4 |
394890.9 |
387094.8 |
7.00E-06 |
400704.8 |
396170.6 |
414295.7 |
401929.8 |
417806.1 |
385739.1 |
394560.6 |
406917.3 |
415909.8 |
401407 |
404034.1 |
6.00E-06 |
418156.4 |
409632.3 |
408388.9 |
416268.6 |
410188.3 |
427177.7 |
405782.9 |
431013.1 |
408631.4 |
421662 |
415028.5 |
5.00E-06 |
429071.5 |
420660.3 |
439646.4 |
444445 |
451018.4 |
438041.1 |
428783.3 |
438260.3 |
444052.7 |
428640.5 |
449725.6 |
4.00E-06 |
475880.1 |
462762.7 |
471101 |
464173.3 |
459961.9 |
498834.6 |
447440.4 |
458926.4 |
477415.8 |
465639.4 |
463744.1 |
3.00E-06 |
494180.2 |
470073.5 |
492323.9 |
491751.2 |
482770.3 |
497042.6 |
492925.9 |
488579 |
498906.6 |
483048.2 |
492239.1 |
2.00E-06 |
523083 |
540346.3 |
547355 |
522686.8 |
539823.1 |
553016.1 |
536623 |
540344.3 |
534051.6 |
528076.3 |
560042.5 |
1.00E-06 |
626599.7 |
642248.7 |
645703.1 |
624471.1 |
620645.9 |
606547.8 |
623932.2 |
620509.7 |
625129.6 |
656599.3 |
634245.9 |
迭代次数曲线是高度重合的,因为11组测试的进样样本比例构成是一致的都是
c:p=1:1。
平均准确率的数据
p |
1 |
0.9 |
0.8 |
0.7 |
0.6 |
0.5 |
0.4 |
0.3 |
0.2 |
0.1 |
0 |
|
平均准确率p-ave |
||||||||||||
c |
δ |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
1 |
0.5 |
1 |
0.899794 |
0.800464 |
0.700469 |
0.602029 |
0.4987 |
0.398861 |
0.300788 |
0.199763 |
0.100714 |
0 |
|
0.4 |
1 |
0.993124 |
0.985533 |
0.978667 |
0.971685 |
0.962249 |
0.959407 |
0.949055 |
0.94661 |
0.936273 |
0.931228 |
|
0.3 |
1 |
0.997123 |
0.995252 |
0.992324 |
0.989115 |
0.987324 |
0.983868 |
0.981942 |
0.980594 |
0.976283 |
0.974985 |
|
0.2 |
0.999713 |
0.998627 |
0.998053 |
0.996444 |
0.996157 |
0.995392 |
0.993994 |
0.99243 |
0.991534 |
0.991353 |
0.991293 |
|
0.1 |
0.991378 |
0.992334 |
0.994185 |
0.993013 |
0.994723 |
0.994879 |
0.996278 |
0.996056 |
0.9967 |
0.997656 |
0.998174 |
|
0.01 |
0.805469 |
0.843628 |
0.86149 |
0.860428 |
0.885031 |
0.910534 |
0.925835 |
0.952118 |
0.962002 |
0.981564 |
1 |
|
0.001 |
0.502568 |
0.56382 |
0.590958 |
0.662426 |
0.693804 |
0.756037 |
0.801309 |
0.862481 |
0.906087 |
0.952505 |
1 |
|
1.00E-04 |
0.362101 |
0.418197 |
0.468861 |
0.559645 |
0.622512 |
0.672788 |
0.742682 |
0.796052 |
0.871822 |
0.938179 |
1 |
|
9.00E-05 |
0.350089 |
0.408308 |
0.453423 |
0.533176 |
0.609474 |
0.667084 |
0.735776 |
0.801334 |
0.871459 |
0.933049 |
1 |
|
8.00E-05 |
0.332579 |
0.414143 |
0.482166 |
0.543906 |
0.601149 |
0.680223 |
0.739448 |
0.795997 |
0.873336 |
0.933466 |
1 |
|
7.00E-05 |
0.341975 |
0.409706 |
0.469022 |
0.5237 |
0.609937 |
0.664579 |
0.73143 |
0.796233 |
0.866324 |
0.934477 |
1 |
|
6.00E-05 |
0.349933 |
0.408665 |
0.464646 |
0.51877 |
0.602925 |
0.661707 |
0.732909 |
0.797421 |
0.86648 |
0.934653 |
1 |
|
5.00E-05 |
0.329244 |
0.404998 |
0.443464 |
0.522492 |
0.587029 |
0.668332 |
0.728895 |
0.789584 |
0.864352 |
0.930564 |
1 |
|
4.00E-05 |
0.322468 |
0.3719 |
0.436165 |
0.495812 |
0.592864 |
0.653654 |
0.728517 |
0.799468 |
0.861314 |
0.930936 |
1 |
|
3.00E-05 |
0.29949 |
0.362709 |
0.448821 |
0.513066 |
0.588508 |
0.661762 |
0.724141 |
0.787416 |
0.857496 |
0.930287 |
1 |
|
2.00E-05 |
0.290507 |
0.379259 |
0.427387 |
0.507653 |
0.574444 |
0.64132 |
0.713523 |
0.793784 |
0.859105 |
0.928552 |
1 |
|
1.00E-05 |
0.280139 |
0.335858 |
0.423363 |
0.495184 |
0.561788 |
0.634821 |
0.707185 |
0.785363 |
0.85316 |
0.929085 |
1 |
|
9.00E-06 |
0.24607 |
0.361719 |
0.424575 |
0.491004 |
0.571461 |
0.633312 |
0.707416 |
0.776882 |
0.855896 |
0.925171 |
1 |
|
8.00E-06 |
0.260743 |
0.334485 |
0.423625 |
0.483141 |
0.565254 |
0.633513 |
0.716933 |
0.770695 |
0.851756 |
0.925921 |
1 |
|
7.00E-06 |
0.25597 |
0.334219 |
0.396879 |
0.49047 |
0.558227 |
0.642869 |
0.70886 |
0.776983 |
0.851007 |
0.928184 |
1 |
|
6.00E-06 |
0.254732 |
0.342428 |
0.415078 |
0.475375 |
0.55957 |
0.631305 |
0.711853 |
0.777089 |
0.853175 |
0.927163 |
1 |
|
5.00E-06 |
0.266246 |
0.343142 |
0.40537 |
0.471854 |
0.543297 |
0.634383 |
0.704619 |
0.77977 |
0.851384 |
0.925946 |
1 |
|
4.00E-06 |
0.248595 |
0.335647 |
0.39871 |
0.483348 |
0.547648 |
0.615535 |
0.703905 |
0.781052 |
0.848346 |
0.924407 |
1 |
|
3.00E-06 |
0.251186 |
0.336422 |
0.397111 |
0.473856 |
0.5554 |
0.620419 |
0.701405 |
0.774382 |
0.847229 |
0.926535 |
1 |
|
2.00E-06 |
0.254184 |
0.317901 |
0.398499 |
0.473735 |
0.553287 |
0.617628 |
0.700017 |
0.772491 |
0.851651 |
0.925337 |
1 |
|
1.00E-06 |
0.238138 |
0.313062 |
0.38693 |
0.479238 |
0.542749 |
0.622884 |
0.696319 |
0.771445 |
0.84736 |
0.923129 |
1 |
从图中可以看到平均准确率的变化是高度规则的。
p |
平均准确率p-ave |
1 |
0.9 |
0.8 |
0.7 |
0.6 |
0.5 |
0.4 |
0.3 |
0.2 |
0.1 |
0 |
c |
δ |
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
1 |
0.2556 |
0.335488 |
0.407014 |
0.48172 |
0.555868 |
0.628667 |
0.705851 |
0.776615 |
0.851096 |
0.926088 |
1 |
将1e-6<=δ<=1e-5的平均准确率取平均值。数据清晰的表明当c与p的进样比例是1:1的情况下,网络
d2(c,p)-4-4-2-(2*k),k∈{0,1}
可以识别测试集中的25.56%的p,和100%的c。如果用pc表示测试集中c占的比例
,用pp表示测试集中p占的比例。则总的平均准确率为
pp |
平均准确率p-ave |
1 |
0.9 |
0.8 |
0.7 |
0.6 |
0.5 |
0.4 |
0.3 |
0.2 |
0.1 |
0 |
pc |
|
0 |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
0.9 |
1 |
实测值 |
0.2556 |
0.335488 |
0.407014 |
0.48172 |
0.555868 |
0.628667 |
0.705851 |
0.776615 |
0.851096 |
0.926088 |
1 |
|
计算值 |
0.2556*pp+pc |
0.2556 |
0.33004 |
0.40448 |
0.47892 |
0.55336 |
0.6278 |
0.70224 |
0.77668 |
0.85112 |
0.92556 |
1 |
从图上看很直观,这两条线高度重合。表明这种算法的精度是有保证的。
表明网络d2(c,p)-4-4-2-(2*k),k∈{0,1}的准确率是一种线性变量与测试集的比例高度相关。可以用表达式
精确的估算。
实验参数
学习率 0.1 |
权重初始化方式 |
Random rand1 =new Random(); |
int ti1=rand1.nextInt(98)+1; |
tw[a][b]=xx*((double)ti1/100); |
训练集 |
0.5 |
c |
||||||
|
0.5 |
p |
||||||
测试集 |
0 |
c |
||||||
1 |
p |
|||||||
f2[0] |
f2[1] |
迭代次数n |
平均准确率p-ave |
δ |
耗时ms/次 |
耗时ms/199次 |
耗时 min/199 |
最大准确率p-max |
0.499498 |
0.530138 |
147.1156 |
1 |
0.5 |
2.040201 |
406 |
0.006767 |
1 |
0.602299 |
0.401437 |
6276.191 |
1 |
0.4 |
12.72864 |
2533 |
0.042217 |
1 |
0.710881 |
0.29236 |
10407.46 |
1 |
0.3 |
19.04523 |
3790 |
0.063167 |
1 |
0.810562 |
0.192418 |
15413.02 |
0.999713 |
0.2 |
26.62814 |
5299 |
0.088317 |
1 |
0.906917 |
0.094307 |
24893 |
0.991378 |
0.1 |
42.68342 |
8494 |
0.141567 |
1 |
0.991307 |
0.008775 |
59839.55 |
0.805469 |
0.01 |
100.5779 |
20015 |
0.333583 |
1 |
0.999158 |
8.48E-04 |
115431.3 |
0.502568 |
0.001 |
194.2714 |
38660 |
0.644333 |
0.966967 |
0.999916 |
8.40E-05 |
201610.7 |
0.362101 |
1.00E-04 |
338.3216 |
67326 |
1.1221 |
0.777778 |
0.999926 |
7.37E-05 |
214043.2 |
0.350089 |
9.00E-05 |
358.5427 |
71350 |
1.189167 |
0.833834 |
0.999935 |
6.49E-05 |
221814.5 |
0.332579 |
8.00E-05 |
370.799 |
73789 |
1.229817 |
0.698699 |
0.999943 |
5.72E-05 |
227647.3 |
0.341975 |
7.00E-05 |
381.6131 |
75941 |
1.265683 |
0.900901 |
0.999951 |
4.94E-05 |
227186.4 |
0.349933 |
6.00E-05 |
379.6181 |
75544 |
1.259067 |
0.734735 |
0.99996 |
4.05E-05 |
245535.8 |
0.329244 |
5.00E-05 |
420.2513 |
83631 |
1.39385 |
0.702703 |
0.999967 |
3.36E-05 |
269459.6 |
0.322468 |
4.00E-05 |
454.1005 |
90383 |
1.506383 |
0.828829 |
0.999976 |
2.37E-05 |
288701.1 |
0.29949 |
3.00E-05 |
491.3367 |
97777 |
1.629617 |
0.698699 |
0.999984 |
1.62E-05 |
317002.9 |
0.290507 |
2.00E-05 |
527.2915 |
104931 |
1.74885 |
0.696697 |
0.999992 |
8.14E-06 |
365424.3 |
0.280139 |
1.00E-05 |
605.2513 |
120445 |
2.007417 |
0.638639 |
0.999993 |
7.12E-06 |
392786 |
0.24607 |
9.00E-06 |
648.4322 |
129038 |
2.150633 |
0.677678 |
0.999994 |
6.43E-06 |
388277.8 |
0.260743 |
8.00E-06 |
642.8593 |
127929 |
2.13215 |
0.775776 |
0.999994 |
5.58E-06 |
400704.8 |
0.25597 |
7.00E-06 |
663.794 |
132095 |
2.201583 |
0.653654 |
0.999995 |
4.78E-06 |
418156.4 |
0.254732 |
6.00E-06 |
691.4472 |
137598 |
2.2933 |
0.682683 |
0.999996 |
3.99E-06 |
429071.5 |
0.266246 |
5.00E-06 |
709.5226 |
141210 |
2.3535 |
0.590591 |
0.999997 |
3.20E-06 |
475880.1 |
0.248595 |
4.00E-06 |
787.201 |
156669 |
2.61115 |
0.720721 |
0.999998 |
2.38E-06 |
494180.2 |
0.251186 |
3.00E-06 |
819.9196 |
163164 |
2.7194 |
0.638639 |
0.999998 |
1.58E-06 |
523083 |
0.254184 |
2.00E-06 |
865.2613 |
172187 |
2.869783 |
0.586587 |
0.999999 |
7.97E-07 |
626599.7 |
0.238138 |
1.00E-06 |
1039.332 |
206827 |
3.447117 |
0.581582 |
训练集 |
0.5 |
c |
||||||
|
0.5 |
p |
||||||
测试集 |
0.1 |
c |
||||||
0.9 |
p |
|||||||
f2[0] |
f2[1] |
迭代次数n |
平均准确率p-ave |
δ |
耗时ms/次 |
耗时ms/199次 |
耗时 min/199 |
最大准确率p-max |
0.499428 |
0.53068 |
149.3769 |
0.899794 |
0.5 |
1.959799 |
406 |
0.006767 |
0.922923 |
0.596002 |
0.408051 |
6215.095 |
0.993124 |
0.4 |
12.91457 |
2570 |
0.042833 |
1 |
0.710895 |
0.293288 |
10095 |
0.997123 |
0.3 |
17.60804 |
3504 |
0.0584 |
1 |
0.810447 |
0.192132 |
15648.27 |
0.998627 |
0.2 |
26.44221 |
5262 |
0.0877 |
1 |
0.907157 |
0.093659 |
24143.51 |
0.992334 |
0.1 |
39.98492 |
7957 |
0.132617 |
1 |
0.991354 |
0.008732 |
57398.58 |
0.843628 |
0.01 |
94.23618 |
18753 |
0.31255 |
1 |
0.99918 |
8.24E-04 |
111056.3 |
0.56382 |
0.001 |
184.2513 |
36667 |
0.611117 |
0.957958 |
0.999918 |
8.27E-05 |
209420.7 |
0.418197 |
1.00E-04 |
343.8794 |
68449 |
1.140817 |
0.866867 |
0.999926 |
7.46E-05 |
216748.9 |
0.408308 |
9.00E-05 |
359.593 |
71559 |
1.19265 |
0.830831 |
0.999936 |
6.41E-05 |
214543.9 |
0.414143 |
8.00E-05 |
358.3467 |
71326 |
1.188767 |
0.784785 |
0.999943 |
5.69E-05 |
225663 |
0.409706 |
7.00E-05 |
375.5528 |
74751 |
1.24585 |
0.83984 |
0.999952 |
4.79E-05 |
236632.7 |
0.408665 |
6.00E-05 |
390.2764 |
77665 |
1.294417 |
0.778779 |
0.99996 |
4.04E-05 |
246959.7 |
0.404998 |
5.00E-05 |
410.397 |
81669 |
1.36115 |
0.875876 |
0.999968 |
3.20E-05 |
267081.9 |
0.3719 |
4.00E-05 |
445.3568 |
88626 |
1.4771 |
0.815816 |
0.999975 |
2.47E-05 |
288744.6 |
0.362709 |
3.00E-05 |
483.0905 |
96150 |
1.6025 |
0.813814 |
0.999984 |
1.63E-05 |
307150 |
0.379259 |
2.00E-05 |
514.9648 |
102478 |
1.707967 |
0.776777 |
0.999992 |
8.03E-06 |
364250.3 |
0.335858 |
1.00E-05 |
608.608 |
121114 |
2.018567 |
0.668669 |
0.999993 |
7.28E-06 |
372373.8 |
0.361719 |
9.00E-06 |
624.5075 |
124277 |
2.071283 |
0.6997 |
0.999994 |
6.15E-06 |
399035.5 |
0.334485 |
8.00E-06 |
665.2915 |
132394 |
2.206567 |
0.68969 |
0.999994 |
5.67E-06 |
396170.6 |
0.334219 |
7.00E-06 |
661.593 |
131657 |
2.194283 |
0.711712 |
0.999995 |
4.77E-06 |
409632.3 |
0.342428 |
6.00E-06 |
684.9598 |
136307 |
2.271783 |
0.751752 |
0.999996 |
4.05E-06 |
420660.3 |
0.343142 |
5.00E-06 |
707.5678 |
140806 |
2.346767 |
0.734735 |
0.999997 |
3.15E-06 |
462762.7 |
0.335647 |
4.00E-06 |
776.7387 |
154571 |
2.576183 |
0.80981 |
0.999998 |
2.36E-06 |
470073.5 |
0.336422 |
3.00E-06 |
784.6734 |
156166 |
2.602767 |
0.636637 |
0.999998 |
1.59E-06 |
540346.3 |
0.317901 |
2.00E-06 |
899.7085 |
179072 |
2.984533 |
0.652653 |
0.999999 |
7.79E-07 |
642248.7 |
0.313062 |
1.00E-06 |
426.0804 |
84790 |
1.413167 |
0.742743 |
训练集 |
0.5 |
c |
||||||
|
0.5 |
p |
||||||
测试集 |
0.2 |
c |
||||||
0.8 |
p |
|||||||
f2[0] |
f2[1] |
迭代次数n |
平均准确率p-ave |
δ |
耗时ms/次 |
耗时ms/199次 |
耗时 min/199 |
最大准确率p-max |
0.49953 |
0.530377 |
149.4774 |
0.800464 |
0.5 |
2.120603 |
422 |
0.007033 |
0.841842 |
0.607443 |
0.398335 |
6098.075 |
0.985533 |
0.4 |
13.91457 |
2784 |
0.0464 |
0.997998 |
0.712454 |
0.292196 |
10101.43 |
0.995252 |
0.3 |
18.44221 |
3670 |
0.061167 |
1 |
0.809695 |
0.193394 |
15381.82 |
0.998053 |
0.2 |
26.38693 |
5267 |
0.087783 |
1 |
0.907243 |
0.094008 |
23415.88 |
0.994185 |
0.1 |
40.15075 |
7990 |
0.133167 |
1 |
0.99133 |
0.008756 |
57319.32 |
0.86149 |
0.01 |
95.19095 |
18943 |
0.315717 |
1 |
0.999157 |
8.49E-04 |
114920.8 |
0.590958 |
0.001 |
190.4171 |
37893 |
0.63155 |
0.963964 |
0.999919 |
8.16E-05 |
208738.6 |
0.468861 |
1.00E-04 |
346.8392 |
69021 |
1.15035 |
0.831832 |
0.999927 |
7.35E-05 |
221076.9 |
0.453423 |
9.00E-05 |
367.2412 |
73112 |
1.218533 |
0.81982 |
0.999936 |
6.43E-05 |
216763.3 |
0.482166 |
8.00E-05 |
362.4171 |
72121 |
1.202017 |
0.875876 |
0.999943 |
5.72E-05 |
224240.8 |
0.469022 |
7.00E-05 |
372.5879 |
74145 |
1.23575 |
0.825826 |
0.999951 |
4.89E-05 |
235333.2 |
0.464646 |
6.00E-05 |
391.4623 |
77916 |
1.2986 |
0.80981 |
0.99996 |
4.02E-05 |
250549.8 |
0.443464 |
5.00E-05 |
422.7387 |
84125 |
1.402083 |
0.761762 |
0.999968 |
3.22E-05 |
268540.2 |
0.436165 |
4.00E-05 |
450.4271 |
89636 |
1.493933 |
0.798799 |
0.999976 |
2.38E-05 |
278070.8 |
0.448821 |
3.00E-05 |
460.7688 |
91708 |
1.528467 |
0.767768 |
0.999984 |
1.63E-05 |
309043 |
0.427387 |
2.00E-05 |
513.7337 |
102249 |
1.70415 |
0.761762 |
0.999992 |
8.05E-06 |
365575.7 |
0.423363 |
1.00E-05 |
604.7487 |
120345 |
2.00575 |
0.681682 |
0.999993 |
7.09E-06 |
377167.3 |
0.424575 |
9.00E-06 |
622.6181 |
123901 |
2.065017 |
0.732733 |
0.999994 |
6.42E-06 |
383537.9 |
0.423625 |
8.00E-06 |
635.7839 |
126521 |
2.108683 |
0.796797 |
0.999994 |
5.67E-06 |
414295.7 |
0.396879 |
7.00E-06 |
686.9296 |
136699 |
2.278317 |
0.711712 |
0.999995 |
4.79E-06 |
408388.9 |
0.415078 |
6.00E-06 |
684.5226 |
136236 |
2.2706 |
0.700701 |
0.999996 |
4.06E-06 |
439646.4 |
0.40537 |
5.00E-06 |
733.1256 |
145892 |
2.431533 |
0.80981 |
0.999997 |
3.23E-06 |
471101 |
0.39871 |
4.00E-06 |
778.3116 |
154884 |
2.5814 |
0.768769 |
0.999998 |
2.45E-06 |
492323.9 |
0.397111 |
3.00E-06 |
815.7739 |
162339 |
2.70565 |
0.743744 |
0.999998 |
1.63E-06 |
547355 |
0.398499 |
2.00E-06 |
906.5729 |
180408 |
3.0068 |
0.640641 |
0.999999 |
8.19E-07 |
645703.1 |
0.38693 |
1.00E-06 |
1067.342 |
212417 |
3.540283 |
0.620621 |
训练集 |
0.5 |
c |
||||||
|
0.5 |
p |
||||||
测试集 |
0.3 |
c |
||||||
0.7 |
p |
|||||||
f2[0] |
f2[1] |
迭代次数n |
平均准确率p-ave |
δ |
耗时ms/次 |
耗时ms/199次 |
耗时 min/199 |
最大准确率p-max |
0.499448 |
0.529456 |
148.6834 |
0.700469 |
0.5 |
2.201005 |
438 |
0.0073 |
0.736737 |
0.603439 |
0.401989 |
6083.377 |
0.978667 |
0.4 |
13.36683 |
2661 |
0.04435 |
0.995996 |
0.71033 |
0.293779 |
9926.829 |
0.992324 |
0.3 |
18.25628 |
3633 |
0.06055 |
1 |
0.809611 |
0.193233 |
15081.81 |
0.996444 |
0.2 |
26.66834 |
5307 |
0.08845 |
1 |
0.9075 |
0.09338 |
25458.15 |
0.993013 |
0.1 |
43.74372 |
8705 |
0.145083 |
1 |
0.991245 |
0.008823 |
60125.44 |
0.860428 |
0.01 |
101.3719 |
20189 |
0.336483 |
1 |
0.999153 |
8.51E-04 |
114448.1 |
0.662426 |
0.001 |
191.6533 |
38172 |
0.6362 |
0.971972 |
0.999916 |
8.41E-05 |
201745.8 |
0.559645 |
1.00E-04 |
341.3116 |
67921 |
1.132017 |
0.897898 |
0.999926 |
7.45E-05 |
218610 |
0.533176 |
9.00E-05 |
363.2161 |
72281 |
1.204683 |
0.901902 |
0.999933 |
6.72E-05 |
217172.3 |
0.543906 |
8.00E-05 |
361.7136 |
71982 |
1.1997 |
0.895896 |
0.999943 |
5.73E-05 |
225940.6 |
0.5237 |
7.00E-05 |
376.5176 |
74930 |
1.248833 |
0.815816 |
0.999951 |
4.87E-05 |
241970.3 |
0.51877 |
6.00E-05 |
397.3116 |
79066 |
1.317767 |
0.887888 |
0.99996 |
4.05E-05 |
245810.6 |
0.522492 |
5.00E-05 |
402.1156 |
80038 |
1.333967 |
0.902903 |
0.999968 |
3.23E-05 |
271148.9 |
0.495812 |
4.00E-05 |
444.1005 |
88376 |
1.472933 |
0.771772 |
0.999975 |
2.48E-05 |
282794.2 |
0.513066 |
3.00E-05 |
462.1106 |
91962 |
1.5327 |
0.82983 |
0.999984 |
1.59E-05 |
319202.7 |
0.507653 |
2.00E-05 |
520.8191 |
103644 |
1.7274 |
0.90991 |
0.999992 |
7.89E-06 |
363737.2 |
0.495184 |
1.00E-05 |
595.1859 |
118443 |
1.97405 |
0.761762 |
0.999993 |
7.25E-06 |
379308.8 |
0.491004 |
9.00E-06 |
621.1256 |
123604 |
2.060067 |
0.760761 |
0.999994 |
6.42E-06 |
392360 |
0.483141 |
8.00E-06 |
641.5477 |
127668 |
2.1278 |
0.673674 |
0.999994 |
5.60E-06 |
401929.8 |
0.49047 |
7.00E-06 |
657.3417 |
130826 |
2.180433 |
0.786787 |
0.999995 |
4.74E-06 |
416268.6 |
0.475375 |
6.00E-06 |
679.8894 |
135298 |
2.254967 |
0.842843 |
0.999996 |
4.03E-06 |
444445 |
0.471854 |
5.00E-06 |
728.1457 |
144903 |
2.41505 |
0.747748 |
0.999997 |
3.17E-06 |
464173.3 |
0.483348 |
4.00E-06 |
759.5075 |
151146 |
2.5191 |
0.756757 |
0.999998 |
2.37E-06 |
491751.2 |
0.473856 |
3.00E-06 |
804.3116 |
160059 |
2.66765 |
0.726727 |
0.999998 |
1.59E-06 |
522686.8 |
0.473735 |
2.00E-06 |
857.2161 |
170586 |
2.8431 |
0.717718 |
0.999999 |
8.19E-07 |
624471.1 |
0.479238 |
1.00E-06 |
1021.563 |
203291 |
3.388183 |
0.725726 |
训练集 |
0.5 |
c |
||||||
|
0.5 |
p |
||||||
测试集 |
0.4 |
c |
||||||
0.6 |
p |
|||||||
f2[0] |
f2[1] |
迭代次数n |
平均准确率p-ave |
δ |
耗时ms/次 |
耗时ms/199次 |
耗时 min/199 |
最大准确率p-max |
0.499522 |
0.529873 |
147.7387 |
0.602029 |
0.5 |
2.035176 |
421 |
0.007017 |
0.642643 |
0.602132 |
0.40252 |
6290.528 |
0.971685 |
0.4 |
12.28643 |
2461 |
0.041017 |
0.993994 |
0.711184 |
0.293026 |
10142.37 |
0.989115 |
0.3 |
18.28141 |
3638 |
0.060633 |
1 |
0.810135 |
0.192014 |
15518.25 |
0.996157 |
0.2 |
26.8995 |
5353 |
0.089217 |
1 |
0.906733 |
0.094114 |
23850.98 |
0.994723 |
0.1 |
39.80402 |
7921 |
0.132017 |
1 |
0.991253 |
0.008819 |
59417.48 |
0.885031 |
0.01 |
98.28141 |
19558 |
0.325967 |
1 |
0.999184 |
8.21E-04 |
116262.8 |
0.693804 |
0.001 |
191.9648 |
38217 |
0.63695 |
0.967968 |
0.999918 |
8.20E-05 |
205856.7 |
0.622512 |
1.00E-04 |
338.7236 |
67406 |
1.123433 |
0.880881 |
0.999928 |
7.23E-05 |
211840.9 |
0.609474 |
9.00E-05 |
349.191 |
69489 |
1.15815 |
0.882883 |
0.999935 |
6.55E-05 |
221671.8 |
0.601149 |
8.00E-05 |
286.5327 |
57036 |
0.9506 |
0.925926 |
0.999942 |
5.84E-05 |
220378.4 |
0.609937 |
7.00E-05 |
361.201 |
71894 |
1.198233 |
0.901902 |
0.99995 |
4.99E-05 |
237669.7 |
0.602925 |
6.00E-05 |
391.6633 |
77957 |
1.299283 |
0.932933 |
0.999959 |
4.08E-05 |
248245.3 |
0.587029 |
5.00E-05 |
408.2915 |
81250 |
1.354167 |
0.857858 |
0.999967 |
3.28E-05 |
262207.7 |
0.592864 |
4.00E-05 |
433.9497 |
86356 |
1.439267 |
0.838839 |
0.999976 |
2.44E-05 |
280333.4 |
0.588508 |
3.00E-05 |
463.9799 |
92332 |
1.538867 |
0.877878 |
0.999984 |
1.61E-05 |
308706.8 |
0.574444 |
2.00E-05 |
515.9598 |
102692 |
1.711533 |
0.812813 |
0.999992 |
8.08E-06 |
366601.9 |
0.561788 |
1.00E-05 |
612.4724 |
121883 |
2.031383 |
0.872873 |
0.999993 |
7.34E-06 |
367669 |
0.571461 |
9.00E-06 |
608.0704 |
121038 |
2.0173 |
0.864865 |
0.999994 |
6.39E-06 |
385873.2 |
0.565254 |
8.00E-06 |
638.8894 |
127139 |
2.118983 |
0.843844 |
0.999994 |
5.68E-06 |
417806.1 |
0.558227 |
7.00E-06 |
690.3668 |
137383 |
2.289717 |
0.817818 |
0.999995 |
4.79E-06 |
410188.3 |
0.55957 |
6.00E-06 |
677.7839 |
134879 |
2.247983 |
0.788789 |
0.999996 |
4.03E-06 |
451018.4 |
0.543297 |
5.00E-06 |
761.2261 |
151487 |
2.524783 |
0.753754 |
0.999997 |
3.19E-06 |
459961.9 |
0.547648 |
4.00E-06 |
771.8342 |
153599 |
2.559983 |
0.775776 |
0.999998 |
2.38E-06 |
482770.3 |
0.5554 |
3.00E-06 |
897.1809 |
178546 |
2.975767 |
0.731732 |
0.999998 |
1.57E-06 |
539823.1 |
0.553287 |
2.00E-06 |
964.196 |
191880 |
3.198 |
0.803804 |
0.999999 |
7.95E-07 |
620645.9 |
0.542749 |
1.00E-06 |
1049.256 |
208809 |
3.48015 |
0.756757 |
训练集 |
0.5 |
c |
||||||
|
0.5 |
p |
||||||
测试集 |
0.5 |
c |
||||||
0.5 |
p |
|||||||
f2[0] |
f2[1] |
迭代次数n |
平均准确率p-ave |
δ |
耗时ms/次 |
耗时ms/199次 |
耗时 min/199 |
最大准确率p-max |
0.499497 |
0.531202 |
143.608 |
0.4987 |
0.5 |
1.979899 |
394 |
0.006567 |
0.538539 |
0.599318 |
0.405333 |
6294.472 |
0.962249 |
0.4 |
13.19095 |
2641 |
0.044017 |
0.98999 |
0.711283 |
0.292612 |
10298.52 |
0.987324 |
0.3 |
18.76884 |
3735 |
0.06225 |
1 |
0.810641 |
0.192034 |
15136.69 |
0.995392 |
0.2 |
27.0804 |
5389 |
0.089817 |
1 |
0.906923 |
0.094133 |
24598.91 |
0.994879 |
0.1 |
42.76382 |
8522 |
0.142033 |
1 |
0.991266 |
0.008806 |
58611.96 |
0.910534 |
0.01 |
100.3216 |
19968 |
0.3328 |
1 |
0.999164 |
8.40E-04 |
110127.1 |
0.756037 |
0.001 |
187.5477 |
37332 |
0.6222 |
0.980981 |
0.999918 |
8.23E-05 |
210147.9 |
0.672788 |
1.00E-04 |
358.0905 |
71268 |
1.1878 |
0.93994 |
0.999926 |
7.38E-05 |
217360.5 |
0.667084 |
9.00E-05 |
370.4623 |
73722 |
1.2287 |
0.924925 |
0.999934 |
6.59E-05 |
216707.4 |
0.680223 |
8.00E-05 |
369.4623 |
73523 |
1.225383 |
0.925926 |
0.999942 |
5.80E-05 |
231569.8 |
0.664579 |
7.00E-05 |
314.9799 |
62689 |
1.044817 |
0.8999 |
0.999951 |
4.95E-05 |
240362.2 |
0.661707 |
6.00E-05 |
412.5226 |
82100 |
1.368333 |
0.944945 |
0.999959 |
4.07E-05 |
247742.3 |
0.668332 |
5.00E-05 |
424.9497 |
84572 |
1.409533 |
0.904905 |
0.999968 |
3.23E-05 |
265902.8 |
0.653654 |
4.00E-05 |
455.9698 |
90738 |
1.5123 |
0.908909 |
0.999976 |
2.45E-05 |
275920.6 |
0.661762 |
3.00E-05 |
472.6935 |
94066 |
1.567767 |
0.87988 |
0.999984 |
1.58E-05 |
315850.9 |
0.64132 |
2.00E-05 |
541.3568 |
107754 |
1.7959 |
0.86987 |
0.999992 |
8.06E-06 |
376979.7 |
0.634821 |
1.00E-05 |
646.196 |
128593 |
2.143217 |
0.82983 |
0.999993 |
7.18E-06 |
381299.2 |
0.633312 |
9.00E-06 |
652.8342 |
129923 |
2.165383 |
0.881882 |
0.999994 |
6.49E-06 |
391096.8 |
0.633513 |
8.00E-06 |
682.9548 |
135909 |
2.26515 |
0.834835 |
0.999994 |
5.68E-06 |
385739.1 |
0.642869 |
7.00E-06 |
653.7236 |
130091 |
2.168183 |
0.915916 |
0.999995 |
4.76E-06 |
427177.7 |
0.631305 |
6.00E-06 |
713.3166 |
141951 |
2.36585 |
0.821822 |
0.999996 |
4.00E-06 |
438041.1 |
0.634383 |
5.00E-06 |
727.5578 |
144801 |
2.41335 |
0.831832 |
0.999997 |
3.17E-06 |
498834.6 |
0.615535 |
4.00E-06 |
846.8342 |
168541 |
2.809017 |
0.808809 |
0.999998 |
2.37E-06 |
497042.6 |
0.620419 |
3.00E-06 |
849.6583 |
169083 |
2.81805 |
0.800801 |
0.999998 |
1.63E-06 |
553016.1 |
0.617628 |
2.00E-06 |
976.3819 |
194306 |
3.238433 |
0.875876 |
0.999999 |
7.82E-07 |
606547.8 |
0.622884 |
1.00E-06 |
1051.598 |
209269 |
3.487817 |
0.80981 |
训练集 |
0.5 |
c |
||||||
|
0.5 |
p |
||||||
测试集 |
0.6 |
c |
||||||
0.4 |
p |
|||||||
f2[0] |
f2[1] |
迭代次数n |
平均准确率p-ave |
δ |
耗时ms/次 |
耗时ms/199次 |
耗时 min/199 |
最大准确率p-max |
0.499516 |
0.532101 |
144.0101 |
0.398861 |
0.5 |
2.628141 |
524 |
0.008733 |
0.443443 |
0.604804 |
0.400418 |
6176.106 |
0.959407 |
0.4 |
16.16583 |
3237 |
0.05395 |
0.994995 |
0.711513 |
0.292618 |
10020.49 |
0.983868 |
0.3 |
20.40704 |
4078 |
0.067967 |
1 |
0.810709 |
0.192582 |
15237 |
0.993994 |
0.2 |
30.39196 |
6052 |
0.100867 |
1 |
0.906985 |
0.094419 |
24297.87 |
0.996278 |
0.1 |
46.24121 |
9207 |
0.15345 |
1 |
0.991297 |
0.008775 |
59634.89 |
0.925835 |
0.01 |
96.71357 |
19255 |
0.320917 |
1 |
0.999153 |
8.54E-04 |
113627.5 |
0.801309 |
0.001 |
183.7035 |
36562 |
0.609367 |
0.983984 |
0.999918 |
8.22E-05 |
208380.2 |
0.742682 |
1.00E-04 |
336.995 |
67067 |
1.117783 |
0.947948 |
0.999928 |
7.23E-05 |
216305.4 |
0.735776 |
9.00E-05 |
349.6884 |
69591 |
1.15985 |
0.975976 |
0.999934 |
6.63E-05 |
214417.1 |
0.739448 |
8.00E-05 |
346.5226 |
68963 |
1.149383 |
0.952953 |
0.999943 |
5.68E-05 |
230410.2 |
0.73143 |
7.00E-05 |
372.1106 |
74053 |
1.234217 |
0.931932 |
0.999952 |
4.79E-05 |
240610.8 |
0.732909 |
6.00E-05 |
389.7136 |
77557 |
1.292617 |
0.946947 |
0.999959 |
4.10E-05 |
251281.2 |
0.728895 |
5.00E-05 |
406.4322 |
80882 |
1.348033 |
0.885886 |
0.999968 |
3.24E-05 |
257265.3 |
0.728517 |
4.00E-05 |
415.6131 |
82713 |
1.37855 |
0.852853 |
0.999976 |
2.38E-05 |
284119.7 |
0.724141 |
3.00E-05 |
459.196 |
91387 |
1.523117 |
0.923924 |
0.999984 |
1.63E-05 |
321754.6 |
0.713523 |
2.00E-05 |
519.5528 |
103395 |
1.72325 |
0.871872 |
0.999992 |
8.02E-06 |
380203 |
0.707185 |
1.00E-05 |
613.5427 |
122102 |
2.035033 |
0.928929 |
0.999993 |
7.32E-06 |
381642.5 |
0.707416 |
9.00E-06 |
616.2814 |
122643 |
2.04405 |
0.843844 |
0.999994 |
6.38E-06 |
373728.2 |
0.716933 |
8.00E-06 |
606.4724 |
120691 |
2.011517 |
0.906907 |
0.999994 |
5.62E-06 |
394560.6 |
0.70886 |
7.00E-06 |
9.135678 |
1828 |
0.030467 |
0.876877 |
0.999995 |
4.78E-06 |
405782.9 |
0.711853 |
6.00E-06 |
682.593 |
135842 |
2.264033 |
0.877878 |
0.999996 |
4.02E-06 |
428783.3 |
0.704619 |
5.00E-06 |
721.8342 |
143647 |
2.394117 |
0.891892 |
0.999997 |
3.17E-06 |
447440.4 |
0.703905 |
4.00E-06 |
754.5377 |
150157 |
2.502617 |
0.860861 |
0.999998 |
2.44E-06 |
492925.9 |
0.701405 |
3.00E-06 |
831.3065 |
165432 |
2.7572 |
0.865866 |
0.999998 |
1.61E-06 |
536623 |
0.700017 |
2.00E-06 |
907.191 |
180540 |
3.009 |
0.881882 |
0.999999 |
7.89E-07 |
623932.2 |
0.696319 |
1.00E-06 |
1054.201 |
209786 |
3.496433 |
0.834835 |
训练集 |
0.5 |
c |
||||||
|
0.5 |
p |
||||||
测试集 |
0.7 |
c |
||||||
0.3 |
p |
|||||||
f2[0] |
f2[1] |
迭代次数n |
平均准确率p-ave |
δ |
耗时ms/次 |
耗时ms/199次 |
耗时 min/199 |
最大准确率p-max |
0.499421 |
0.530705 |
147.1859 |
0.300788 |
0.5 |
2.19598 |
437 |
0.007283 |
0.352352 |
0.607273 |
0.398441 |
6170.256 |
0.949055 |
0.4 |
16.31156 |
3249 |
0.05415 |
0.98999 |
0.711602 |
0.292775 |
10198.22 |
0.981942 |
0.3 |
18.39698 |
3668 |
0.061133 |
1 |
0.809789 |
0.192777 |
15533.43 |
0.99243 |
0.2 |
26.59296 |
5299 |
0.088317 |
1 |
0.906926 |
0.094385 |
24151.85 |
0.996056 |
0.1 |
40.11055 |
7990 |
0.133167 |
1 |
0.991251 |
0.008819 |
58560.76 |
0.952118 |
0.01 |
95.53769 |
19019 |
0.316983 |
0.998999 |
0.999154 |
8.51E-04 |
107564.9 |
0.862481 |
0.001 |
174.8693 |
34806 |
0.5801 |
0.987988 |
0.999918 |
8.23E-05 |
209740.5 |
0.796052 |
1.00E-04 |
341.7839 |
68017 |
1.133617 |
0.96997 |
0.999926 |
7.44E-05 |
216424.9 |
0.801334 |
9.00E-05 |
354.0402 |
70464 |
1.1744 |
0.940941 |
0.999934 |
6.58E-05 |
221045.8 |
0.795997 |
8.00E-05 |
361.3869 |
71926 |
1.198767 |
0.922923 |
0.999944 |
5.61E-05 |
228854.8 |
0.796233 |
7.00E-05 |
386.6884 |
76956 |
1.2826 |
0.925926 |
0.999951 |
4.92E-05 |
236488.6 |
0.797421 |
6.00E-05 |
420.2613 |
83635 |
1.393917 |
0.933934 |
0.999959 |
4.12E-05 |
258579.6 |
0.789584 |
5.00E-05 |
460.6985 |
91679 |
1.527983 |
0.940941 |
0.999967 |
3.28E-05 |
261405.7 |
0.799468 |
4.00E-05 |
468.794 |
93299 |
1.554983 |
0.960961 |
0.999976 |
2.43E-05 |
282179.7 |
0.787416 |
3.00E-05 |
503.0754 |
100122 |
1.6687 |
0.898899 |
0.999984 |
1.64E-05 |
307254.4 |
0.793784 |
2.00E-05 |
511.9598 |
101885 |
1.698083 |
0.925926 |
0.999992 |
8.01E-06 |
370808.6 |
0.785363 |
1.00E-05 |
607.5779 |
120920 |
2.015333 |
0.922923 |
0.999993 |
7.27E-06 |
393012.9 |
0.776882 |
9.00E-06 |
643.8442 |
128130 |
2.1355 |
0.922923 |
0.999994 |
6.36E-06 |
415835.2 |
0.770695 |
8.00E-06 |
681.8693 |
135697 |
2.261617 |
0.941942 |
0.999994 |
5.54E-06 |
406917.3 |
0.776983 |
7.00E-06 |
666.9045 |
132716 |
2.211933 |
0.924925 |
0.999995 |
4.86E-06 |
431013.1 |
0.777089 |
6.00E-06 |
706.4221 |
140599 |
2.343317 |
0.937938 |
0.999996 |
3.98E-06 |
438260.3 |
0.77977 |
5.00E-06 |
717.9296 |
142869 |
2.38115 |
0.862863 |
0.999997 |
3.21E-06 |
458926.4 |
0.781052 |
4.00E-06 |
752.5427 |
149760 |
2.496 |
0.903904 |
0.999998 |
2.36E-06 |
488579 |
0.774382 |
3.00E-06 |
798.2261 |
158850 |
2.6475 |
0.863864 |
0.999998 |
1.60E-06 |
540344.3 |
0.772491 |
2.00E-06 |
884.0804 |
175938 |
2.9323 |
0.910911 |
0.999999 |
7.86E-07 |
620509.7 |
0.771445 |
1.00E-06 |
1014.653 |
201922 |
3.365367 |
0.902903 |
训练集 |
0.5 |
c |
||||||
|
0.5 |
p |
||||||
测试集 |
0.8 |
c |
||||||
0.2 |
p |
|||||||
f2[0] |
f2[1] |
迭代次数n |
平均准确率p-ave |
δ |
耗时ms/次 |
耗时ms/199次 |
耗时 min/199 |
最大准确率p-max |
0.499471 |
0.530313 |
147.6382 |
0.199763 |
0.5 |
2.376884 |
473 |
0.007883 |
0.238238 |
0.607675 |
0.396889 |
6484.824 |
0.94661 |
0.4 |
15.98492 |
3181 |
0.053017 |
0.983984 |
0.711471 |
0.291903 |
10131.84 |
0.980594 |
0.3 |
18.45729 |
3705 |
0.06175 |
1 |
0.81034 |
0.192206 |
15523 |
0.991534 |
0.2 |
26.90452 |
5355 |
0.08925 |
1 |
0.906968 |
0.094075 |
24210.84 |
0.9967 |
0.1 |
40.17085 |
8010 |
0.1335 |
1 |
0.991286 |
0.008796 |
59353.21 |
0.962002 |
0.01 |
97.15075 |
19333 |
0.322217 |
1 |
0.999151 |
8.54E-04 |
112414.9 |
0.906087 |
0.001 |
184.1055 |
36669 |
0.61115 |
0.995996 |
0.999918 |
8.26E-05 |
202288.7 |
0.871822 |
1.00E-04 |
334.5427 |
66574 |
1.109567 |
0.968969 |
0.999925 |
7.53E-05 |
210094 |
0.871459 |
9.00E-05 |
346.2462 |
68919 |
1.14865 |
0.984985 |
0.999934 |
6.64E-05 |
215015 |
0.873336 |
8.00E-05 |
355.1508 |
70675 |
1.177917 |
0.961962 |
0.999942 |
5.78E-05 |
224129 |
0.866324 |
7.00E-05 |
384.7337 |
76562 |
1.276033 |
0.967968 |
0.999951 |
4.87E-05 |
238662.6 |
0.86648 |
6.00E-05 |
405.9497 |
80804 |
1.346733 |
0.961962 |
0.99996 |
4.02E-05 |
253117.2 |
0.864352 |
5.00E-05 |
435.7085 |
86707 |
1.445117 |
0.96997 |
0.999968 |
3.19E-05 |
265370 |
0.861314 |
4.00E-05 |
450.799 |
89725 |
1.495417 |
0.976977 |
0.999976 |
2.45E-05 |
288700.1 |
0.857496 |
3.00E-05 |
492.3266 |
97974 |
1.6329 |
0.932933 |
0.999984 |
1.62E-05 |
313644 |
0.859105 |
2.00E-05 |
537.2915 |
106955 |
1.782583 |
0.950951 |
0.999992 |
7.99E-06 |
383179.2 |
0.85316 |
1.00E-05 |
654.6432 |
130275 |
2.17125 |
0.933934 |
0.999993 |
7.34E-06 |
372760.6 |
0.855896 |
9.00E-06 |
623.3518 |
124063 |
2.067717 |
0.935936 |
0.999994 |
6.44E-06 |
394640.4 |
0.851756 |
8.00E-06 |
656.5628 |
130656 |
2.1776 |
0.937938 |
0.999994 |
5.63E-06 |
415909.8 |
0.851007 |
7.00E-06 |
697.9497 |
138892 |
2.314867 |
0.930931 |
0.999995 |
4.67E-06 |
408631.4 |
0.853175 |
6.00E-06 |
683.7839 |
136089 |
2.26815 |
0.933934 |
0.999996 |
4.00E-06 |
444052.7 |
0.851384 |
5.00E-06 |
742.7236 |
147802 |
2.463367 |
0.916917 |
0.999997 |
3.24E-06 |
477415.8 |
0.848346 |
4.00E-06 |
809.5075 |
161092 |
2.684867 |
0.937938 |
0.999998 |
2.37E-06 |
498906.6 |
0.847229 |
3.00E-06 |
827.4975 |
164672 |
2.744533 |
0.936937 |
0.999998 |
1.55E-06 |
534051.6 |
0.851651 |
2.00E-06 |
904.5025 |
179997 |
2.99995 |
0.926927 |
0.999999 |
7.72E-07 |
625129.6 |
0.84736 |
1.00E-06 |
1062.995 |
211551 |
3.52585 |
0.913914 |
训练集 |
0.5 |
c |
||||||
|
0.5 |
p |
||||||
测试集 |
0.9 |
c |
||||||
0.1 |
p |
|||||||
f2[0] |
f2[1] |
迭代次数n |
平均准确率p-ave |
δ |
耗时ms/次 |
耗时ms/199次 |
耗时 min/199 |
最大准确率p-max |
0.499505 |
0.530991 |
146.9146 |
0.100714 |
0.5 |
2.276382 |
453 |
0.00755 |
0.129129 |
0.604423 |
0.400491 |
6527.412 |
0.936273 |
0.4 |
13.9196 |
2770 |
0.046167 |
0.983984 |
0.711739 |
0.292659 |
10246.46 |
0.976283 |
0.3 |
18.13065 |
3624 |
0.0604 |
1 |
0.809975 |
0.192286 |
15367.05 |
0.991353 |
0.2 |
26.42714 |
5259 |
0.08765 |
1 |
0.906997 |
0.094119 |
23795.91 |
0.997656 |
0.1 |
39.42211 |
7845 |
0.13075 |
1 |
0.991311 |
0.008757 |
58745.15 |
0.981564 |
0.01 |
97.52764 |
19424 |
0.323733 |
1 |
0.999153 |
8.52E-04 |
112087.3 |
0.952505 |
0.001 |
184.1457 |
36645 |
0.61075 |
1 |
0.999918 |
8.26E-05 |
201300.8 |
0.938179 |
1.00E-04 |
337.9849 |
67261 |
1.121017 |
0.990991 |
0.999928 |
7.26E-05 |
216170.4 |
0.933049 |
9.00E-05 |
370.8894 |
73808 |
1.230133 |
0.986987 |
0.999935 |
6.48E-05 |
222313.3 |
0.933466 |
8.00E-05 |
381.5879 |
75937 |
1.265617 |
0.991992 |
0.999943 |
5.75E-05 |
221232.3 |
0.934477 |
7.00E-05 |
374.7588 |
74592 |
1.2432 |
0.976977 |
0.999951 |
4.95E-05 |
232360.4 |
0.934653 |
6.00E-05 |
394.2714 |
78476 |
1.307933 |
0.980981 |
0.999959 |
4.11E-05 |
260700.7 |
0.930564 |
5.00E-05 |
441.7538 |
87925 |
1.465417 |
0.983984 |
0.999968 |
3.20E-05 |
264792.1 |
0.930936 |
4.00E-05 |
366.3216 |
72929 |
1.215483 |
0.983984 |
0.999976 |
2.45E-05 |
282872.8 |
0.930287 |
3.00E-05 |
476.1809 |
94776 |
1.5796 |
0.970971 |
0.999984 |
1.61E-05 |
327235 |
0.928552 |
2.00E-05 |
553.196 |
110117 |
1.835283 |
0.967968 |
0.999992 |
8.01E-06 |
356469.7 |
0.929085 |
1.00E-05 |
601.4774 |
119726 |
1.995433 |
0.972973 |
0.999993 |
7.13E-06 |
396853.3 |
0.925171 |
9.00E-06 |
670.5075 |
133431 |
2.22385 |
0.966967 |
0.999994 |
6.21E-06 |
394890.9 |
0.925921 |
8.00E-06 |
664.7236 |
132280 |
2.204667 |
0.967968 |
0.999994 |
5.65E-06 |
401407 |
0.928184 |
7.00E-06 |
676.4724 |
134618 |
2.243633 |
0.97998 |
0.999995 |
4.87E-06 |
421662 |
0.927163 |
6.00E-06 |
710.4121 |
141372 |
2.3562 |
0.978979 |
0.999996 |
4.16E-06 |
428640.5 |
0.925946 |
5.00E-06 |
723.0402 |
143885 |
2.398083 |
0.971972 |
0.999997 |
3.21E-06 |
465639.4 |
0.924407 |
4.00E-06 |
784.3417 |
156084 |
2.6014 |
0.968969 |
0.999998 |
2.35E-06 |
483048.2 |
0.926535 |
3.00E-06 |
813.9196 |
161970 |
2.6995 |
0.95996 |
0.999998 |
1.54E-06 |
528076.3 |
0.925337 |
2.00E-06 |
901.191 |
179338 |
2.988967 |
0.961962 |
0.999999 |
8.11E-07 |
656599.3 |
0.923129 |
1.00E-06 |
1109.442 |
220779 |
3.67965 |
0.960961 |
训练集 |
0.5 |
c |
||||||
|
0.5 |
p |
||||||
测试集 |
1 |
c |
||||||
0 |
p |
|||||||
f2[0] |
f2[1] |
迭代次数n |
平均准确率p-ave |
δ |
耗时ms/次 |
耗时ms/199次 |
耗时 min/199 |
最大准确率p-max |
0.499512 |
0.530374 |
148.8543 |
0 |
0.5 |
2.155779 |
429 |
0.00715 |
0 |
0.605797 |
0.399978 |
6306.643 |
0.931228 |
0.4 |
13.97487 |
2781 |
0.04635 |
0.984985 |
0.711183 |
0.29228 |
10420.39 |
0.974985 |
0.3 |
18.71357 |
3724 |
0.062067 |
1 |
0.810918 |
0.191953 |
15286.05 |
0.991293 |
0.2 |
26.24121 |
5238 |
0.0873 |
1 |
0.906977 |
0.093858 |
24414.25 |
0.998174 |
0.1 |
42.22111 |
8403 |
0.14005 |
1 |
0.991248 |
0.008814 |
59492.45 |
1 |
0.01 |
102.4221 |
20382 |
0.3397 |
1 |
0.999154 |
8.51E-04 |
110956.2 |
1 |
0.001 |
188.6834 |
37548 |
0.6258 |
1 |
0.999919 |
8.12E-05 |
206577 |
1 |
1.00E-04 |
345.6482 |
68784 |
1.1464 |
1 |
0.999926 |
7.45E-05 |
225841.7 |
1 |
9.00E-05 |
380.3417 |
75692 |
1.261533 |
1 |
0.999936 |
6.46E-05 |
214257.2 |
1 |
8.00E-05 |
365.0302 |
72643 |
1.210717 |
1 |
0.999943 |
5.75E-05 |
227719.7 |
1 |
7.00E-05 |
380.2864 |
75677 |
1.261283 |
1 |
0.999952 |
4.83E-05 |
237107 |
1 |
6.00E-05 |
398.6633 |
79334 |
1.322233 |
1 |
0.99996 |
4.04E-05 |
245581.8 |
1 |
5.00E-05 |
414.191 |
82424 |
1.373733 |
1 |
0.999967 |
3.30E-05 |
266492.5 |
1 |
4.00E-05 |
449.3116 |
89413 |
1.490217 |
1 |
0.999976 |
2.40E-05 |
282278.7 |
1 |
3.00E-05 |
474.9598 |
94517 |
1.575283 |
1 |
0.999984 |
1.63E-05 |
323231 |
1 |
2.00E-05 |
543.8794 |
108232 |
1.803867 |
1 |
0.999992 |
7.97E-06 |
368836.5 |
1 |
1.00E-05 |
621.2161 |
123638 |
2.060633 |
1 |
0.999993 |
7.13E-06 |
377565.8 |
1 |
9.00E-06 |
635.4623 |
126457 |
2.107617 |
1 |
0.999994 |
6.41E-06 |
387094.8 |
1 |
8.00E-06 |
653.1658 |
130044 |
2.1674 |
1 |
0.999994 |
5.60E-06 |
404034.1 |
1 |
7.00E-06 |
680.8241 |
135499 |
2.258317 |
1 |
0.999995 |
4.73E-06 |
415028.5 |
1 |
6.00E-06 |
700.2714 |
139385 |
2.323083 |
1 |
0.999996 |
3.96E-06 |
449725.6 |
1 |
5.00E-06 |
679.5126 |
135255 |
2.25425 |
1 |
0.999997 |
3.13E-06 |
463744.1 |
1 |
4.00E-06 |
781.4372 |
155522 |
2.592033 |
1 |
0.999998 |
2.39E-06 |
492239.1 |
1 |
3.00E-06 |
831.1809 |
165420 |
2.757 |
1 |
0.999998 |
1.60E-06 |
560042.5 |
1 |
2.00E-06 |
941.6432 |
187389 |
3.12315 |
1 |
0.999999 |
8.12E-07 |
634245.9 |
1 |
1.00E-06 |
1067.819 |
212512 |
3.541867 |
1 |
转载自原文链接, 如需删除请联系管理员。
原文链接:测试集的构成比例对网络分类性能的影响cp,转载请注明来源!