首页 » 技术分享 » kaggle初探--泰坦尼克号生存预测

kaggle初探--泰坦尼克号生存预测

 

继续学习数据挖掘,尝试了kaggle上的泰坦尼克号生存预测。

Titanic for Machine Learning

导入和读取

# data processing
import numpy as np
import pandas as pd
import re
#visiulization
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('ggplot')
train = pd.read_csv('D:/data/titanic/train.csv')
test = pd.read_csv('D:/data/titanic/test.csv')
train.head()
.dataframe thead tr:only-child th { text-align: right; } .dataframe thead th { text-align: left; } .dataframe tbody tr th { vertical-align: top; }

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th… female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

转载自原文链接, 如需删除请联系管理员。

原文链接:kaggle初探--泰坦尼克号生存预测,转载请注明来源!

0