文章作者:ktyanny 文章来源:ktyanny 转载请注明,谢谢合作。
由于位运算直接对内存数据进行操作,不需要转成十进制,因此处理速度非常快。
按位与(Bitwise AND),运算符号为&
a&b 的操作的结果:a、b中对应位同时为1,则对应结果位也为1、
例如:
10010001101000101011001111000
& 111111100000000
---------------------------------------------
10101100000000
对10101100000000进行右移8位得到的是101011,这就得到了a的8~15位的掩码了。那么根据这个启示,判断一个整数是否是处于 0-65535 之间(常用的越界判断):
用一般的 (a >= 0) && (a <= 65535) 可能要两次判断。
改用位运算只要一次:
a & ~((1 << 16)-1)
后面的常数是编译时就算好了的。其实只要算一次逻辑与就行了。
常用技巧:
1、 用于整数的奇偶性判断
一个整数a, a & 1 这个表达式可以用来判断a的奇偶性。二进制的末位为0表示偶数,最末位为1表示奇数。使用a%2来判断奇偶性和a & 1是一样的作用,但是a & 1要快好多。
2、 判断n是否是2的正整数冪
(!(n&(n-1)) ) && n
举个例子:
如果n = 16 = 10000, n-1 = 1111
那么:
10000
& 1111
----------
0
再举一个例子:如果n = 256 = 100000000, n-1 = 11111111
那么:
100000000
&11111111
--------------
0
好!看完上面的两个小例子,相信大家都有一个感性的认识。从理论上讲,如果一个数a他是2的正整数幂,那么a 的二进制形式必定为1000…..(后面有0个或者多个0),那么结论就很显然了。
3、 统计n中1的个数
朴素的统计办法是:先判断n的奇偶性,为奇数时计数器增加1,然后将n右移一位,重复上面步骤,直到移位完毕。
朴素的统计办法是比较简单的,那么我们来看看比较高级的办法。
举例说明,考虑2位整数 n=11,里边有2个1,先提取里边的偶数位10,奇数位01,把偶数位右移1位,然后与奇数位相加,因为每对奇偶位相加的和不会超过“两位”,所以结果中每两位保存着数n中1的个数;相应的如果n是四位整数 n=0111,先以“一位”为单位做奇偶位提取,然后偶数位移位(右移1位),相加;再以“两位”为单位做奇偶提取,偶数位移位(这时就需要移2位),相加,因为此时没对奇偶位的和不会超过“四位”,所以结果中保存着n中1的个数,依次类推可以得出更多位n的算法。整个思想类似分治法。
在这里就顺便说一下常用的二进制数:
0xAAAAAAAA=10101010101010101010101010101010
0x55555555 = 1010101010101010101010101010101(奇数位为1,以1位为单位提取奇偶位)
0xCCCCCCCC = 11001100110011001100110011001100
0x33333333 = 110011001100110011001100110011(以“2位”为单位提取奇偶位)
0xF0F0F0F0 = 11110000111100001111000011110000
0x0F0F0F0F = 1111000011110000111100001111(以“8位”为单位提取奇偶位)
0xFFFF0000 =11111111111111110000000000000000
0x0000FFFF = 1111111111111111(以“16位”为单位提取奇偶位)
例如:32位无符号数的1的个数可以这样数:
count_one(unsigned
long
n)
{
//
0xAAAAAAAA,0x55555555分别是以“1位”为单位提取奇偶位
n
=
((n
&
0xAAAAAAAA
)
>>
1
)
+
(n
&
0x55555555
);
//
0xCCCCCCCC,0x33333333分别是以“2位”为单位提取奇偶位
n
=
((n
&
0xCCCCCCCC
)
>>
2
)
+
(n
&
0x33333333
);
//
0xF0F0F0F0,0x0F0F0F0F分别是以“4位”为单位提取奇偶位
n
=
((n
&
0xF0F0F0F0
)
>>
4
)
+
(n
&
0x0F0F0F0F
);
//
0xFF00FF00,0x00FF00FF分别是以“8位”为单位提取奇偶位
n
=
((n
&
0xFF00FF00
)
>>
8
)
+
(n
&
0x00FF00FF
);
//
0xFFFF0000,0x0000FFFF分别是以“16位”为单位提取奇偶位
n
=
((n
&
0xFFFF0000
)
>>
16
)
+
(n
&
0x0000FFFF
);
return
n;
}
转载自原文链接, 如需删除请联系管理员。
原文链接:位运算 之(1) 按位与(AND)& 操作,转载请注明来源!