首页 » 技术分享 » 【STM32】系统时钟RCC详解(超详细,超全面)

【STM32】系统时钟RCC详解(超详细,超全面)

 
文章目录

1什么是时钟

时钟是单片机运行的基础,时钟信号推动单片机内各个部分执行相应的指令。时钟系统就是CPU的脉搏,决定cpu速率,像人的心跳一样 只有有了心跳,人才能做其他的事情,而单片机有了时钟,才能够运行执行指令,才能够做其他的处理 (点灯,串口,ADC),时钟的重要性不言而喻。

 

为什么 STM32 要有多个时钟源呢?

STM32本身十分复杂,外设非常多  但我们实际使用的时候只会用到有限的几个外设,使用任何外设都需要时钟才能启动,但并不是所有的外设都需要系统时钟那么高的频率,为了兼容不同速度的设备,有些高速,有些低速,如果都用高速时钟,势必造成浪费   并且,同一个电路,时钟越快功耗越快,同时抗电磁干扰能力也就越弱,所以较为复杂的MCU都是采用多时钟源的方法来解决这些问题。所以便有了STM32的时钟系统和时钟树

 

总括:

  • STM32时钟系统主要的目的就是给相对独立的外设模块提供时钟,也是为了降低整个芯片的耗能
  • 系统时钟,是处理器运行时间基准(每一条机器指令一个时钟周期)
  • 时钟是单片机运行的基础,时钟信号推动单片机内各个部分执行相应的指令。
  • 一个单片机内提供多个不同的系统时钟,可以适应更多的应用场合。
  • 不同的功能模块会有不同的时钟上限,因此提供不同的时钟,也能在一个单片机内放置更多的功能模块。
    对不同模块的时钟增加开启和关闭功能,可以降低单片机的功耗
  • STM32为了低功耗,他将所有的外设时钟都设置为disable(不使能),用到什么外设,只要打开对应外设的时钟就可以, 其他的没用到的可以还是disable(不使能),这样耗能就会减少。  这就是为什么不管你配置什么功能都需要先打开对应的时钟的原因

 

STM32的时钟系统框图

 

乍一看很吓人,但其实很好理解,我们看系统时钟SYSCLK 的左边  系统时钟有很多种选择,而左边的部分就是设置系统时钟使用那个时钟源,   

系统时钟SYSCLK 的右边,则是系统时钟通过AHB预分频器,给相对应的外设设置相对应的时钟频率

 

从左到右可以简单理解为  各个时钟源--->系统时钟来源的设置--->各个外设时钟的设置

时钟系统

1各个时钟源    (左边的部分)

STM32 有4个独立时钟源:HSI、HSE、LSI、LSE。
①、HSI是高速内部时钟,RC振荡器,频率为8MHz,精度不高。
②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz
③、LSI是低速内部时钟,RC振荡器,频率为40kHz,提供低功耗时钟。  
④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。

其中LSI是作为IWDGCLK(独立看门狗)时钟源和RTC时钟源 而独立使用 

而HSI高速内部时钟 HSE高速外部时钟 PLL锁相环时钟  这三个经过分频或者倍频 作为系统时钟来使用

 

PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。  通过倍频之后作为系统时钟的时钟源

 

举个例子:Keil编写程序是默认的时钟为72Mhz,其实是这么来的:外部晶振(HSE)提供的8MHz(与电路板上的晶振的相关)通过PLLXTPRE分频器后,进入PLLSRC选择开关,进而通过PLLMUL锁相环进行倍频(x9)后,为系统提供72MHz的系统时钟(SYSCLK)。之后是AHB预分频器对时钟信号进行分频,然后为低速外设提供时钟。

或者内部RC振荡器(HSI) 为8MHz  /2 为4MHz 进入PLLSRC选择开关,通过PLLMUL锁相环进行倍频(x18)后 为72MHz

 

PS:  网上有很多人说是5个时钟源,这种说法有点问题,学习之后就会发现PLL并不是自己产生的时钟源,而是通过其他三个时钟源倍频得到的时钟

2系统时钟SYSCLK

系统时钟SYSCLK可来源于三个时钟源:
①、HSI振荡器时钟
②、HSE振荡器时钟
③、PLL时钟
最大为72Mhz

 

3USB时钟

STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取(唯一的),,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz

4把时钟信号输出到外部

STM32可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。可以把时钟信号输出供外部使用

5系统时钟通过AHB分频器给外设提供时钟(右边的部分)  重点

 

从左到右可以简单理解为  系统时钟--->AHB分频器--->各个外设分频倍频器 --->   外设时钟的设置

 

右边部分为:系统时钟SYSCLK通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用: 

 ①内核总线:送给AHB总线、内核、内存和DMA使用的HCLK时钟。 

 ②Tick定时器:通过8分频后送给Cortex的系统定时器时钟。 

 ③I2S总线:直接送给Cortex的空闲运行时钟FCLK。 

 ④APB1外设:送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给通用定时器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2-7使用。 

 ⑤APB2外设:送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给高级定时器。该倍频器可选择1或者2倍频,时钟输出供定时器1和定时器8使用。

 

另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。 

需要注意的是,如果 APB 预分频器分频系数是 1,则定时器时钟频率 (TIMxCLK) 为 PCLKx。否则,定      时器时钟频率将为 APB 域的频率的两倍:TIMxCLK = 2xPCLKx。 

APB1和APB2的对应外设

F1系列

APB1上面连接的是低速外设,包括电源接口、备份接口、CAN、USB、I2C1、I2C2、USART2、USART3、UART4、UART5、SPI2、SP3等;

而APB2上面连接的是高速外设,包括UART1、SPI1、Timer1、ADC1、ADC2、ADC3、所有的普通I/O口(PA-PE)、第二功能I/O(AFIO)口等。

F4系列

这个和F1系列类似,我们就举几个特殊的

 APB2总线:高级定时器timer1, timer8以及通用定时器timer9, timer10, timer11   UTART1,USART6

 APB1总线:通用定时器timer2~timer5,通用定时器timer12~timer14以及基本定时器timer6,timer7  UTART2~UTART5

F4系列的系统时钟频率最高能到168M

 

具体  可以在 stm32f10x_rcc.h  和stm32f40x_rcc.h   中查看

或者通过 STM32参考手册搜索“系统架构”或者“系统结构”  查看外设挂在哪个时钟下

 

RCC相关寄存器:

这里我们以F1系列为例

RCC 寄存器结构,RCC_TypeDeff,在文件“stm32f10x.h”中定义如下:

1059行->1081行。:  
typedef struct  
{  
vu32 CR;                  //HSI,HSE,CSS,PLL等的使能  
vu32 CFGR;              //PLL等的时钟源选择以及分频系数设定 
vu32 CIR;                // 清除/使能 时钟就绪中断 
vu32 APB2RSTR;      //APB2线上外设复位寄存器 
vu32 APB1RSTR;      //APB1线上外设复位寄存器 
vu32 AHBENR;         //DMA,SDIO等时钟使能 
vu32 APB2ENR;       //APB2线上外设时钟使能 
vu32 APB1ENR;      //APB1线上外设时钟使能 
vu32 BDCR;           //备份域控制寄存器 
vu32 CSR;             
} RCC_TypeDef; 

可以对上上面的时钟框图和RCC寄存器来学习,对STM32的时钟系统有个大概的了解   其实也就是我们上面介绍的流程,理解了自然也就能写出来

RCC初始化:

这里我们使用HSE(外部时钟),正常使用的时候也都是使用外部时钟

使用HSE时钟,程序设置时钟参数流程:
1、将RCC寄存器重新设置为默认值   RCC_DeInit;
2、打开外部高速时钟晶振HSE       RCC_HSEConfig(RCC_HSE_ON);
3、等待外部高速时钟晶振工作      HSEStartUpStatus = RCC_WaitForHSEStartUp();
4、设置AHB时钟         RCC_HCLKConfig;
5、设置高速AHB时钟     RCC_PCLK2Config;
6、设置低速速AHB时钟   RCC_PCLK1Config;
7、设置PLL              RCC_PLLConfig;
8、打开PLL              RCC_PLLCmd(ENABLE);
9、等待PLL工作          while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
10、设置系统时钟        RCC_SYSCLKConfig;
11、判断是否PLL是系统时钟     while(RCC_GetSYSCLKSource() != 0x08)
12、打开要使用的外设时钟      RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()

代码实现:

对RCC的配置函数(使用外部8MHz晶振)  

系统时钟72MHz,APH 72MHz,APB2 72MHz,APB1 32MHz,USB 48MHz TIMCLK=72M

void RCC_Configuration(void)
{
	//----------使用外部RC晶振-----------
	RCC_DeInit();			//初始化为缺省值
	RCC_HSEConfig(RCC_HSE_ON);	//使能外部的高速时钟 
	while(RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET);	//等待外部高速时钟使能就绪
	
	FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);	//Enable Prefetch Buffer
	FLASH_SetLatency(FLASH_Latency_2);		//Flash 2 wait state
	
	RCC_HCLKConfig(RCC_SYSCLK_Div1);		//HCLK = SYSCLK
	RCC_PCLK2Config(RCC_HCLK_Div1);			//PCLK2 =  HCLK
	RCC_PCLK1Config(RCC_HCLK_Div2);			//PCLK1 = HCLK/2
	RCC_PLLConfig(RCC_PLLSource_HSE_Div1,RCC_PLLMul_9);	//PLLCLK = 8MHZ * 9 =72MHZ
	RCC_PLLCmd(ENABLE);			//Enable PLLCLK
 
	while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);	//Wait till PLLCLK is ready
    RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);	//Select PLL as system clock
	while(RCC_GetSYSCLKSource()!=0x08);		//Wait till PLL is used as system clock source
	
	//---------打开相应外设时钟--------------------
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);	//使能APB2外设的GPIOA的时钟		 
}

也就是我们时钟树框图从左到右的配置,

时钟监视系统(CSS)

STM32还提供了一个时钟监视系统(CSS),用于监视高速外部时钟(HSE)的工作状态。倘若HSE失效,会自动切换(高速内部时钟)HSI作为系统时钟的输入,保证系统的正常运行。

 

 

转载自原文链接, 如需删除请联系管理员。

原文链接:【STM32】系统时钟RCC详解(超详细,超全面),转载请注明来源!

0