首页 » 技术分享 » Python学习笔记(4)——Matplotlib中的annotate(注解)的用法

Python学习笔记(4)——Matplotlib中的annotate(注解)的用法

 
文章目录

在上一篇博文ID3决策树算法中,绘制决策树时,使用了Matplotlib的注解工具annotate,借此机会系统学习一下annotate的用法。

annotate用于在图形上给数据添加文本注解,而且支持带箭头的划线工具,方便我们在合适的位置添加描述信息。

参数说明:

Axes.annotate(s, xy, *args, **kwargs)

  • s:注释文本的内容
  • xy:被注释的坐标点,二维元组形如(x,y)
  • xytext:注释文本的坐标点,也是二维元组,默认与xy相同
  • xycoords:被注释点的坐标系属性,允许输入的值如下
属性值 含义
'figure points' 以绘图区左下角为参考,单位是点数
'figure pixels' 以绘图区左下角为参考,单位是像素数
'figure fraction' 以绘图区左下角为参考,单位是百分比
'axes points' 以子绘图区左下角为参考,单位是点数(一个figure可以有多个axex,默认为1个)
'axes pixels' 以子绘图区左下角为参考,单位是像素数
'axes fraction' 以子绘图区左下角为参考,单位是百分比
'data' 以被注释的坐标点xy为参考 (默认值)
'polar' 不使用本地数据坐标系,使用极坐标系
  • textcoords :注释文本的坐标系属性,默认与xycoords属性值相同,也可设为不同的值。除了允许输入xycoords的属性值,还允许输入以下两种:
属性值 含义
'offset points' 相对于被注释点xy的偏移量(单位是点)
'offset pixels' 相对于被注释点xy的偏移量(单位是像素)

arrowprops:箭头的样式,dict(字典)型数据,如果该属性非空,则会在注释文本和被注释点之间画一个箭头。如果不设置'arrowstyle' 关键字,则允许包含以下关键字:

关键字 说明
width 箭头的宽度(单位是点)
headwidth 箭头头部的宽度(点)
headlength 箭头头部的长度(点)
shrink 箭头两端收缩的百分比(占总长)
? 任何 matplotlib.patches.FancyArrowPatch中的关键字

如果设置了‘arrowstyle’关键字,以上关键字就不能使用。允许的值有:

箭头的样式 属性
'-' None
'->' head_length=0.4,head_width=0.2
'-[' widthB=1.0,lengthB=0.2,angleB=None
'|-|' widthA=1.0,widthB=1.0
'-|>' head_length=0.4,head_width=0.2
'<-' head_length=0.4,head_width=0.2
'<->' head_length=0.4,head_width=0.2
'<|-' head_length=0.4,head_width=0.2
'<|-|>' head_length=0.4,head_width=0.2
'fancy' head_length=0.4,head_width=0.4,tail_width=0.4
'simple' head_length=0.5,head_width=0.5,tail_width=0.2
'wedge' tail_width=0.3,shrink_factor=0.5

FancyArrowPatch的关键字包括:

Key Description
arrowstyle 箭头的样式
connectionstyle 连接线的样式
relpos

箭头起始点相对注释文本的位置,默认为 (0.5, 0.5),即文本的中心,

(0,0)表示左下角,(1,1)表示右上角

patchA 箭头起点处的图形(matplotlib.patches对象),默认是注释文字框
patchB 箭头终点处的图形(matplotlib.patches对象),默认为空
shrinkA 箭头起点的缩进点数,默认为2
shrinkB 箭头终点的缩进点数,默认为2
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for matplotlib.patches.PathPatch
  • annotation_clip : 布尔值,可选参数,默认为空。设为True时,只有被注释点在子图区内时才绘制注释;设为False时,无论被注释点在哪里都绘制注释。仅当xycoords为‘data’时,默认值空相当于True。

返回值:

Annotation对象

示例:

  • 一个基本的注释示例,设置了箭头的颜色和缩进,感兴趣的话可以以此为基础尝试更多的属性和样式。
import numpy as np
import matplotlib.pyplot as plt

fig, ax = plt.subplots()

# 绘制一个余弦曲线
t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2*np.pi*t)
line, = ax.plot(t, s, lw=2)

# 绘制一个黑色,两端缩进的箭头
ax.annotate('local max', xy=(2, 1), xytext=(3, 1.5),
            xycoords='data',
            arrowprops=dict(facecolor='black', shrink=0.05)
            )
ax.set_ylim(-2, 2)
plt.show()

  • 坐标转换示例——在本例中,我们学习用不同的坐标体系绘制注释。
import numpy as np
import matplotlib.pyplot as plt

# 以步长0.005绘制一个曲线
x = np.arange(0, 10, 0.005)
y = np.exp(-x/2.) * np.sin(2*np.pi*x)

fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_xlim(0, 10)
ax.set_ylim(-1, 1)

# 被注释点的数据轴坐标和所在的像素
xdata, ydata = 5, 0
xdisplay, ydisplay = ax.transData.transform_point((xdata, ydata))

# 设置注释文本的样式和箭头的样式
bbox = dict(boxstyle="round", fc="0.8")
arrowprops = dict(
    arrowstyle = "->",
    connectionstyle = "angle,angleA=0,angleB=90,rad=10")

# 设置偏移量
offset = 72
# xycoords默认为'data'数据轴坐标,对坐标点(5,0)添加注释
# 注释文本参考被注释点设置偏移量,向左2*72points,向上72points
ax.annotate('data = (%.1f, %.1f)'%(xdata, ydata),
            (xdata, ydata), xytext=(-2*offset, offset), textcoords='offset points',
            bbox=bbox, arrowprops=arrowprops)

# xycoords以绘图区左下角为参考,单位为像素
# 注释文本参考被注释点设置偏移量,向右0.5*72points,向下72points
disp = ax.annotate('display = (%.1f, %.1f)'%(xdisplay, ydisplay),
            (xdisplay, ydisplay), xytext=(0.5*offset, -offset),
            xycoords='figure pixels',
            textcoords='offset points',
            bbox=bbox, arrowprops=arrowprops)


plt.show()

  • 极坐标上的注释——在此例中,我们会在极坐标系绘图,并在极坐标系设置被注释点,以绘图区的百分比为参数放置注释文本。
import numpy as np
import matplotlib.pyplot as plt

# 绘制一个极地坐标,再以0.001为步长,画一条螺旋曲线
fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
r = np.arange(0,1,0.001)
theta = 2 * 2*np.pi * r
line, = ax.plot(theta, r, color='#ee8d18', lw=3)

# 对索引为800处画一个圆点,并做注释
ind = 800
thisr, thistheta = r[ind], theta[ind]
ax.plot([thistheta], [thisr], 'o')
ax.annotate('a polar annotation',
            xy=(thistheta, thisr),  # 被注释点遵循极坐标系,坐标为角度和半径
            xytext=(0.05, 0.05),    # 注释文本放在绘图区的0.05百分比处
            textcoords='figure fraction',
            arrowprops=dict(facecolor='black', shrink=0.05),# 箭头线为黑色,两端缩进5%
            horizontalalignment='left',# 注释文本的左端和低端对齐到指定位置
            verticalalignment='bottom',
            )
plt.show()

  • 不同样式的注释文本示例
import matplotlib.pyplot as plt

# 设置绘图区标题
fig = plt.figure()
fig.suptitle('bold figure suptitle', fontsize=14, fontweight='bold')

# 设置子绘图区标题
ax = fig.add_subplot(111)
fig.subplots_adjust(top=0.85)
ax.set_title('axes title')

# 设置x y坐标轴的标识
ax.set_xlabel('xlabel')
ax.set_ylabel('ylabel')

# 红色、透明度0.5、边框留白10
ax.text(3, 8, 'boxed italics text in data coords', style='italic',
        bbox={'facecolor':'red', 'alpha':0.5, 'pad':10})

# 文字中有数学公式
ax.text(2, 6, r'an equation: $E=mc^2$', fontsize=15)

# 文字中有ASCII码
ax.text(3, 2, 'unicode: Institut f\374r Festk\366rperphysik')

# 转换坐标系
ax.text(0.95, 0.01, 'colored text in axes coords',
        verticalalignment='bottom', horizontalalignment='right',
        transform=ax.transAxes,
        color='green', fontsize=15)

# 在2,1处画个圆点,添加注释
ax.plot([2], [1], 'o')
ax.annotate('annotate', xy=(2, 1), xytext=(3, 4),
            arrowprops=dict(facecolor='black', shrink=0.05))

ax.axis([0, 10, 0, 10])

plt.show()


参考:

官方文档 https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.annotate.html#matplotlib.axes.Axes.annotate

转载自原文链接, 如需删除请联系管理员。

原文链接:Python学习笔记(4)——Matplotlib中的annotate(注解)的用法,转载请注明来源!

0